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Generative Pretrained Transformer

Decoders are autoregressive models;
They are trained to predict the next token
after reading the preceding ones
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Generalised Pretrained Transformer (GPT) - 2017

Attention Is All You Need
Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain ‘Google Brain Google Research Google Research

avaswani@google.com noam@google.com nikip@google.com usz@google.com
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Google Research University of Toronto Google Brain
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"Neural Machine Translation by Jointly Learning to Align and Translate"
by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, 2014.
Introduced concept of attention mechanism and laid the foundation for
subsequent developments in NLP and DL, including the transformer
architecture introduced in "Attention Is All You Need."
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Attention

He went to the bank and learned of his empty account, after
which he went to a river bank and cried.
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@ Attention mechanism has an infinite reference window

@ In contrast, Recurring Neural Network (RNN) has a short reference
window, Long Short Term Memory (LSTM) has a longer window.
RNN does not work, LSTM has limited capability.
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One Hot Encoding, Word Embedding, Positional Encoding

Linear & logistic regression models can deal with numerical data only, not
text. In one-hot encoding, the string encoded variable is replaced with new
variables of boolean type, e.g., a feature such as color can be encoded as:

red | green | blue
One-hot Word
! 0 0 encoded word Word2vec Embedding
0 1 0
0 0 1 ...l wish none of this has happened. So do all who live to see such times. But that is not
_— up to us to decide. All we have to decide is what to do with the time that is given to us...
horse
dog
cat
red
ruman > wish wish
aaid none none
sad
love
guitar
wiolin 037
= 099 AJ's dog is a cutie =—> Position 2
dog = 0.01 AJ looks like a dog == Position 5
0.08.
= 0.37 0.42
d=5 = pas 3 0.99 Positional 0.84
PEposai) = 5“'1( Encodin e
10000 &7, 0.01 9 0.12
: 0.08 0.81
odd pos sin, even P°5 cos Embedding Vector Encoding of
of "Dog” position in sentence Embedding of Dog

lwith context info)
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Multi Head Attention
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]
Attention: Query, Key, Value

Concept of:
@ Query (Q)
@ Key (K)
@ Value (V)
All constructed from the embedding.

| came from your other question Self-atlention onginal work? The key/value/query formulation of
attention is from the paper Attention s All You Need

31

How should one understand the queries, keys, and values

The key/value/query concepts come from retrieval systems. For example, when you type a query fo

\’ search for some video on Youtube, the search engine will map your query against a set of keys
(video title, description elc.) associated with candidate videos in the database, then present you the
best maiched videos (values)

Mimic the retrieval of a value v; for a query g based on a key k; in DB.

attention(q, k,v) = Z similarity(q, ki) x vi (weighted)

I
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]
Attention: Q, K, V and weights Q,,, K,,, V.,

Weights are initialised randomly using a random distribution. Example:

input #1 input #2 input #3

Because every input has a dimension of 4, each set of the weights must have a shape of 4x3.
Weights are initialised randomly, it is done once before training.

Weights for key Weights for query Weights for value

[(e, 0, 11, [f1, e, 11, [lo, 2, o],
[1, 1, o], [1, e, o], [e, 3, 6],
e, 1, o], (o, o, 1], [1, e, 3],
[1, 1, e1] (e, 1, 11] [1, 1, 0]]
Key representation Key representation Key representation
for input 1: for input 2: for input 3:
[e, @, 1] (e, e, 1] [0, ®, 1]
[1, &, 1, 0] x [1, 1, 0] = [0, 1, 1] [®, 2, &, 2] x [1, 1, @] = [4, 4, 0] [1, 1, 1, 1] x [1, 1, @] = [2, 3, 1]
te, 1, @) [e, 1, 0] [e, 1, 0]
(1, 1, 6] (1, 1, [, 1, €]

key key

key
Key representation:

(Vectorise)
0, o, 1) I—l T—I 1—I

e

(1,0 1,0 (11,0 [o,1,1] ingut #1 iopat2 input 3
1
1

e, 2, 0, 21 x (o, 1, €] = [4, 4, 0]
ce 02,31 [1[e]*]e] [0]2]o]2] []e]e ]

[1, 1, 1,11 11,
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Attention: Q, K, V and weights Q,,, K,,, V.,

Query representation:
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]
Attention: Q, K, V and weights Q,,, K,,, V.,

Attention scores - dot product between Input 1's query (red) with all keys (orange), including itself

e, 4, 2] muttplication [ as [as [as]
[1, 0, 2] x [1, 4, 3] = [2, 4, 4] t
(1, e, 1]

ey wann

=t oy e
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softmax([2, 4, 4]) = [0.0, 0.5, 0.5]

Multiply Softmax attention scores for each input (blue)
by its corresponding value (purple).

1: 0.0 * [1, 2, 3] = [6.0, 0.0, 0.0]
2: 0.5 » [2, 8, 0] = [1.0, 4.0, 0.0]
3: 0.5 » [2, 6, 3] = [1.0, 3.0, 1.5]
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Attention: Q, K, V and weights Q,,, K,,, V.,

Sum weighted values to get Output 1

[6.0, 0.0, 0.0]
+ [1.0, 4.0, 0.0]
+ [1.0, 3.0, 1.5]

= [2.0, 7.0, 1.5]
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Attention Filter - filter out unnecessary information (noise)
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Multi Head Attention

Multi-Head Attention
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Multi Head Attention - Concatenation
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Information Preservation
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Add (Preserve Information) & Normalisation
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Feed Forward

Feed Forward
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Decoder Layer
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Masking
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Decoders are autoregressive models;
They are trained to predict the next token
after reading the preceding ones
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Potential Innovations

@ Softmax calculation for output probabilities are indendent and is
simplistic. In many cases, joint probabilities for bi-gram and tri-gram
occurances are more appropriate.

@ The next token generated in the decode can be a "composite" token
in response to the computed attention from the input.

© Reduce "Cost to Serve (CTS)" through reduced parameters and
better efficiency through quantisation.

_ Generative Pretrained Transformer August 31, 2024 21/1



Conclusion

© GPT does not replicate human writing or speaking processes.
Although they imitate human writing, any apparent cleverness
primarily arises from our inclination to attribute human characteristics
to non-human entities (anthropomorphization).

@ LLMs are essentially establishing statistical connections among
vectors representing words and more extended grammatical
structures. Each word within a sentence is linked to the subsequent
word in the sequence with an associated probability.

© This diverges significantly from human cognitive processes, where we
employ word meanings to construct intricate and precise structures of
"meanings" and definitions. For LLMs, definitions are confined to
statistical interrelations among intricate vectors encompassing words,
sentences, and more extensive grammatical constructs. LLMs cannot
innovate, not just yet.

@ That said, LLMs are impressive and have massive use cases.
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Questions?

Thank You!
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