CHAPTER

DIFFERENTIATION

All things change — a timeless creed,

Yet how they change is thought's true seed.
From motion’s pulse to nature’s chart,
Derivatives trace the living heart.

In mathematics, the derivative of a function of a real variable measures the sensitivity to change
of the function value, i.e., the output value with respect to a change in its argument, i.e., the
input value. Derivatives are a fundamental to calculus.

4.1 DEFINITION OF A DERIVATIVE

-

f(xo+h) — f(zo)

y=fx) Consider the limit: }llin%) h
_)
Qixg + h, flxy + h) This limit is called the derivative and is written as:
| df dy /
if(—fo +h) — flxg) bt (z)
o

Its value at a is represented as: | f (a)

dx T=a

A derivative is rate of change, it is the tangent at the point .

0 Xq xg+h

A function f(z) is differentiable at z = a if f (a) exists and f(z) is called differentiable on
an interval if the derivative exists for each point in that interval. If f(x) is differentiable at
d

x = a, then f(x) is continuous at = = a. e is known as the Differential Operator .
i

A piecewise continuous function can be differentiated at the intersection of its pieces, but the
differentiability at the point of intersection depends on whether the two pieces meet smoothly
(i.e., whether the function is continuous and has the same derivative from both sides at the
intersection point).

For a piecewise continuous function f(z) to be differentiable at the intersection point ¢ of its
pieces:

1. Continuity at xo: The function must be continuous at z¢. This means the left-hand limit
and right-hand limit of f(x) at o must be equal. This ensures there is no jump or hole in
the graph of f(x) at zo.

lim_f(a) = lim,f(a) = f(z0)
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16



CHAPTER 4. DIFFERENTIATION 17

2. Equal Derivatives at xo: The derivatives of the two pieces of the function must be the
same at o for the function to be differentiable at that point. This is a stronger condition
- it ensures the slope (rate of change) from both sides matches.That’s what makes the
graph not only joined but also smooth (no sharp corner or cusp). Specifically:

lim f'(x) = hm f'(x)

17%11?0 CE—)CZ?O

If either of these conditions is violated, the function will not be differentiable at x.

4.2 DERIVATIVE OF A PoLyNOMIAL TERM

flz) ="
_ n__ . n
f(a) =lim 717(@ f(a) = lim r—a
r—a €Tr—a r—a Ir—a

" —a" = (r—a)(z"  tax" 2+ a?e" P a2+ a™
fa) = %i_)nb(a:"_l +az" 2 a2 a2+ a1 = na !

dx™ d

% =nz""'| and, obviously, %(constant) =0

4.3 DERIVATIVES OF A TRIGONOMETRIC FUNCTION

d ' h) — si
@(sm(:n)) _ }Ll_% sin(x + })L sin(z)
lim sin(x) cos(h) + cos(x) sin(h) — sin(x)
© h—0 h
B . cos(h)—1 . sin(h)
= sin(z) ’{1_% — + cos(x) ;llll)% A
1
h)—1 '
= sin(z) llli% cos(h) + cos(x) lim k

h

From basic trigonometric identities we have,

1 — cos(h) = 2sin? (g)

d ’ sin (Q)
%(szn(l‘)) = —szn(m)2TQ +cos()

= —2sin(x hm Z%&%@(‘L) + cos(x

—(sin(z)) = cos(x)

dx
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4.4 DERIVATIVE OF A LOG FUNCTION

Compute %(ln x)

. I (z+h) 1
ilnx— hm in(z +h) ln(x) = lim " = lim 1ln (1—|—h> = lim In <1+ h>h

dx —0 h h—0 h h—0 h x h—0

Leth=nzx

. 11 1y 1 1 1 1\"

lim In(1 4 n) —’{grbln(ﬂ%—n)n) = —in (}lg%(un)n) =in LIEEO(H <n> ] = In(e)

Euler’s number, e, is defined as:
\" X1
e = lim (1+> = — =2718271...

n—oo n n'
n=0

The natural logarithm function in(x) is the inverse of the exponential function e”.
That means, In(e*) = z and (@) — g Setting x =1, In(e) = 1. Hence,
d

—Ilnx=—
T

dx

4.5 CuaN RuLE

Compute %(v(u(az)))
- (3 2) -y (3 1 2)
dx_acl—%Aa?_x—)O Au Az z—0 \ Au z—0 \ Az

dv_dvdu

de  du = dx

4.6 DERIVATIVE OF AN EXPONENTIAL FUNCTION

Compute d% (a®)

Let y=a"
Iny =zxlna
1@ =lIna
ydr

dy

e =ylna

—a* =a"lna
dx

4.7 ImpLiCIT DIFFERENTIATION

In implicit differentiation, we differentiate each side of an equation with two variables (usually
x and y) by treating one of the variables as a function of the other. This calls for using the chain
rule. Example:

d d
%(952"‘9)—(15596 + 7 y —2x+2ydy:0_> dy _ %
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4.8 Propuct RuULE

flz+h)g(x+h) = f(x)g(x)

(fg)" = lim, -
iy J@ P9t h) — fz+h)g(x) + fla+h)g(z) - f(z)g(x)
h—0 h
:]}L%f(ﬂh)(g(ﬂhf)b—g(ﬂ?)) + Jim oo )f(x+h}1—f(ﬂf)
(f9) = f(@)g () +g(a)f (=) (4.8.1)
49 QUOTIENT RULE
() = L1 S~ 5 1 f - hgla) — f()g(e+h)
g h—0 g2 h—0 h h—0 h glx+h)g(x)
— lim 1 fl@+h)g(x) — f(z)g(z) + f(z)g(z) — f(z)g(z + h)
h—0 g(z + h)g(z) h
~ lim (g(x)f(“h}z_f(x) _f(x)g(erh})l—g(w))
(g) - fgg;fg 4.9.1)

410 L'HoOriTAL'S RULE

First, need to do mathematical manipulations to get the limit into a 'Hépital form, i.e., 0/0 or
oo/oo form. Let f(x) and g(x) be continuous functions on an interval containing z = a, with

f(a) = g(a) = 0. Suppose that f and g are differentiable, and that f"and ¢’ are continuous. and,
suppose that g'(a) # 0. Then,

lim fo) _ lim f@) _ lim f(@) = fla)

fz) = f(a)
T—a g(q;) T—a g(,CC) T—=a g(ﬂf) - g(a’)
/ )

(4.10.1)

4.11 Concave Upr (Convex) & Concave DowN

Let y = f(x) be twice-differentiable on an interval /. If f” > 0 on I, the graph of f over I is
concave up (also called convex). If f” < 0 on I, the graph of f over I is concave down.

4.12 PoweR SERIES, TAYLOR SERIES & MACLAURIN SERIES

Consider the following function that is represented as a power series.
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f(z) = icn(x—a)" =co+ci(z—a)+e(x—a)+... +ep(z—a)"
fa)=co

fla)=a

(@) = 265 — 3 % £ (a)

F(a)=3x2c3—c3= % "(a)

Fia) =n(n—1)(n—2)..1 - cp = %f”(a)

If f™(x) exists at = = a, the Taylor series for f(x) at a is given by:

nzz:ofn(f)(x —a) = f(a) —i—fl(a)(:c—a) + / 2(!a) (x—a)?+...+ fn(?)(:r— )+
(4.12.1)
A Maclaurin series is a Taylor series expansion about 0.
f(z) = f(0)+ f (0)z+ / 2<!0) z2 ... JM;(!O):C” TE (4.12.2)

The series may or may not converge at x = x,. To converge, for any ¢, there is exists an IV that
satisfies:

|Rn(zp)| = |s(zp) — sn(zp)| <eVn>N (foralln> N)
where s,,(z) is the nth partial sum:

sn(z) = ap + ag(z — o) + -+ an(z —ap)”
and R, (x,) is the remainder.

Rn(2) = ang1(z — 20)" ™ + appo(x — x0)" 2 + ...

The convergence interval is |x — x| < R (radius of convergence). This means that in the case

of convergence, we can approximate the sum s(x1) by s, (x1) as accurately as we want by taking
a large enough n.

f(x) is called analytic at a point « = x if it can be represented by a power series in powers
of x — x¢ with a positive radius of convergence R. This means that a real analytic function
has to be an infinitely differentiable function.

413 DERIVATIVE OF e*

Taylor series expansion of el near h = 0:

2 3 h

h €
=14+h4+—4+—+... =1
S THR N T e

— d
=1 = %exzegC
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414 HyprerBoLric FuNcTIONS - DEFINITIONS

xT —X
. et —e
sinh x =
2
et +e *
cosh xr =
2
T —X
e —e
tanhx = ——
et 4+ e %

‘ cosh’z — sinh?z =1 ‘

4.15 PARTIAL DERIVATIVES

f(ﬁ?—i-h,y) _f(xay)

fx(xay):}llg% h
) h) — 3
o) = i L2 = F(0)

fz= fa:(xyy) = gxf(wvy)
fy= L) = 5 fa)
Example,

f(x,y) = 2%y —10y*2> + 432 — Ttan(4y)

0
aixf(xuyvz) - 2.’Ey+43

gf(:c,y,z) = 2?2 — 20yz> — 28sec?(4y)
Y

0 _ 2.2
&f(xayvz) - 30?/ z

416 SymPy Cope

Compute the derivative of y with respect to x for the following functions: y = z?

import sympy as sp

import numpy as np

] import matplotlib.pyplot as plt

from IPython.display import display, Math

i from sympy import sqrt, diff

from sympy import sin, cos, tan, ln, trigsimp, expand_trig, simplify
from sympy {import sinh, cosh

9 Y4 sp.symbols(’x?’)

y X**x2
der = diff(y, (x, 1)) # first derivative of y wrt x
display(der)
y = sin(x)
J der = diff(y, (x,2)) # second derivative of y wrt x

g display(der)
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y = 1ln(x)

der = diff(y, (x,1)) # first derivative of y wrt x

display(der)

value_at_4 = der.subs(x, 4) # evaluate value of the derivative at x = 4
display(value_at_4)

a = sp.symbols(’a’)

Yy = axxx

der = diff(y, x) # derivative of y wrt x
display(der)

2%*X
-sin(x)
] 1/x
N 1/4

import sympy as sp

from IPython.display import display, Math

] from sympy dimport sin, cos, tan, exp, E, I, simplify, integrate, latex
from sympy.abc import x, y, z, t, w

fun = Exx*(x)

latex_fun = latex(fun)
display(fun.series(x,n=10))
display(latex_fun)

fun = Exx (I*wxXx)
display(fun.series(x,n=10))

fun = cos(wxx)
sl = fun.series(x,n=10)
display(sl)

fun = Ixsin(wxx)
s2 = fun.series(x,n=10)
display(s2)

display(sl+s2)
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