
chapter 4

Differentiation

All things change — a timeless creed,
Yet how they change is thought’s true seed.

From motion’s pulse to nature’s chart,
Derivatives trace the living heart.

In mathematics, the derivative of a function of a real variable measures the sensitivity to change
of the function value, i.e., the output value with respect to a change in its argument, i.e., the
input value. Derivatives are a fundamental to calculus.

4.1 Definition of a Derivative

Consider the limit: lim
h→0

f(x0 + h) − f(x0)
h

This limit is called the derivative and is written as:
df

dx
= dy

dx
= f

′(x)

Its value at a is represented as: f
′(a) = dy

dx

∣∣∣∣
x=a

A derivative is rate of change, it is the tangent at the point .

A function f(x) is differentiable at x = a if f
′(a) exists and f(x) is called differentiable on

an interval if the derivative exists for each point in that interval. If f(x) is differentiable at

x = a, then f(x) is continuous at x = a. d

dx
is known as the Differential Operator .

A piecewise continuous function can be differentiated at the intersection of its pieces, but the
differentiability at the point of intersection depends on whether the two pieces meet smoothly
(i.e., whether the function is continuous and has the same derivative from both sides at the
intersection point).

For a piecewise continuous function f(x) to be differentiable at the intersection point x0 of its
pieces:

1. Continuity at x0: The function must be continuous at x0. This means the left-hand limit
and right-hand limit of f(x) at x0 must be equal. This ensures there is no jump or hole in
the graph of f(x) at x0.
.

lim
x→x−

0

f(x) = lim
x→x+

0

f(x) = f(x0)

16
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2. Equal Derivatives at x0: The derivatives of the two pieces of the function must be the
same at x0 for the function to be differentiable at that point. This is a stronger condition
- it ensures the slope (rate of change) from both sides matches.That’s what makes the
graph not only joined but also smooth (no sharp corner or cusp). Specifically:

lim
x→x−

0

f ′(x) = lim
x→x+

0

f ′(x)

If either of these conditions is violated, the function will not be differentiable at x0.

4.2 Derivative of a Polynomial Term

f(x) = xn

f
′(a) = lim

x→a

f(x) − f(a)
x − a

= lim
x→a

xn − an

x − a

xn − an = (x − a)(xn−1 + axn−2 + a2xn−3 + · · · + an−2x + an−1)

f
′(a) = lim

x→a
(xn−1 + axn−2 + a2xn−3 + · · ·an−2x + an−1) = nan−1

dxn

dx
= nxn−1 and, obviously, d

dx
(constant) = 0

4.3 Derivatives of a Trigonometric Function

d

dx
(sin(x)) = lim

h→0

sin(x + h) − sin(x)
h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h) − sin(x)
h

= sin(x) lim
h→0

cos(h) − 1
h

+ cos(x) lim
h→0

sin(h)
h

= sin(x) lim
h→0

cos(h) − 1
h

+ cos(x)
���

���*
1

lim
h→0

sin(h)
h

From basic trigonometric identities we have,

1 − cos(h) = 2sin2
(

h

2

)
d

dx
(sin(x)) = −sin(x)2

sin2
(

h
2

)
h

+ cos(x)

= −2sin(x) lim
h→0

�
�

�
���

1
sin

(
h
2

)
h/2 ��

���
��*

1

lim
h→0

sin
(

h
2

)
h/2

(
h

4

)
+ cos(x)

d

dx
(sin(x)) = cos(x)
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4.4 Derivative of a log function

Compute d
dx(ln x)

d

dx
ln x = lim

h→0

ln(x + h) − ln(x)
h

= lim
h→0

ln (x+h)
x

h
= lim

h→0

1
h

ln

(
1 + h

x

)
= lim

h→0
ln

(
1 + h

x

) 1
h

Let h = nx

lim
h→0

ln(1 + n)
1
n

1
x = lim

h→0
ln

(
(1 + n)

1
n

) 1
x = 1

x
ln

(
lim
n→0

(1 + n)
1
n

)
= 1

x
ln

[
lim

n→∞
(1 +

( 1
n

)n]
= ln(e)

Euler’s number, e, is defined as:

e = lim
n→∞

(
1 + 1

n

)n

=
∞∑

n=0

1
n! = 2.718271 . . .

The natural logarithm function ln(x) is the inverse of the exponential function ex.
That means, ln(ex) = x and eln(x) = x. Setting x = 1, ln(e) = 1. Hence,

d

dx
ln x = 1

x

4.5 Chain Rule

Compute d
dx(v(u(x)))

dv

dx
= lim

x→0

∆v

∆x
= lim

x→0

(
∆v

∆u
× ∆u

∆x

)
= lim

x→0

(
∆v

∆u

)
× lim

x→0

(
∆u

∆x

)
dv

dx
= dv

du
× du

dx

4.6 Derivative of an exponential function

Compute d
dx(ax)

Let y = ax

lny = xlna

1
y

dy

dx
= lna

dy

dx
= y lna

d

dx
ax = ax lna

4.7 Implicit Differentiation

In implicit differentiation, we differentiate each side of an equation with two variables (usually
x and y) by treating one of the variables as a function of the other. This calls for using the chain
rule. Example:

x2 + y2 = 1
d

dx(x2 + y2) = d
dxx2 + d

dxy2 = 2x + 2y dy
dx = 0 → dy

dx = −x
y
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4.8 Product Rule

(fg)′ = lim
h→0

f(x + h)g(x + h) − f(x)g(x)
h

= lim
h→0

f(x + h)g(x + h) − f(x + h)g(x) + f(x + h)g(x) − f(x)g(x)
h

= lim
h→0

f(x + h)(g(x + h) − g(x))
h

+ lim
h→0

g(x)f(x + h) − f(x)
h

(fg)′ = f(x)g′(x) + g(x)f ′(x) (4.8.1)

4.9 Quotient Rule

(
f

g

)′

= lim
h→0

f
′
g − fg

′

g2 = lim
h→0

f(x+h)
g(x+h) − f(x)

g(x)
h

= lim
h→0

1
h

f(x + h)g(x) − f(x)g(x + h)
g(x + h)g(x)

= lim
h→0

1
g(x + h)g(x)

f(x + h)g(x) − f(x)g(x) + f(x)g(x) − f(x)g(x + h)
h

= lim
h→0

(
g(x)f(x + h) − f(x)

h
− f(x)g(x + h) − g(x)

h

)
(

f

g

)′

= f
′
g − fg

′

g2 (4.9.1)

4.10 L’Hôpital’s rule

First, need to do mathematical manipulations to get the limit into a l’Hôpital form, i.e., 0/0 or
∞/∞ form. Let f(x) and g(x) be continuous functions on an interval containing x = a, with
f(a) = g(a) = 0. Suppose that f and g are differentiable, and that f

′ and g
′ are continuous. and,

suppose that g
′(a) , 0. Then,

lim
x→a

f(x)
g(x) = lim

x→a

f(x)
g(x) = lim

x→a

f(x) − f(a)
g(x) − g(a)

= lim
x→a

(f(x) − f(a))/(x − a)
(g(x) − f(a))/(x − a)

=
lim
x→a

(f(x) − f(a))/(x − a)
lim
x→a

(g(x) − f(a))/(x − a)

lim
x→a

f(x)
g(x) = f

′(x)
g

′(x) (4.10.1)

4.11 Concave Up (Convex) & Concave Down

Let y = f(x) be twice-differentiable on an interval I . If f” > 0 on I , the graph of f over I is
concave up (also called convex). If f” < 0 on I , the graph of f over I is concave down.

4.12 Power Series, Taylor Series & Maclaurin Series

Consider the following function that is represented as a power series.
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f(x) =
∞∑

n=0
cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + . . . + cn(x − a)n

f(a) = c0

f
′(a) = c1

f
′′(a) = 2c2 → c2 = 1

2f
′′(a)

f
′′′(a) = 3 × 2c3 → c3 = 1

3!f
′′′(a)

...

fn(a) = n(n − 1)(n − 2)...1 → cn = 1
n!f

n(a)

If fn(x) exists at x = a, the Taylor series for f(x) at a is given by:

∞∑
n=0

fn(a)
n! (x − a) = f(a) + f

′(a)(x − a) + f
′′(a)
2! (x − a)2 + . . . + fn(a)

n! (x − a)n + . . .

(4.12.1)

A Maclaurin series is a Taylor series expansion about 0.

f(x) = f(0) + f
′(0)x + f

′′(0)
2! x2 + . . .

fn(0)
n! xn + . . . (4.12.2)

The series may or may not converge at x = xp. To converge, for any ϵ, there is exists an N that
satisfies:

|Rn(xp)| = |s(xp) − sn(xp)| < ϵ ∀n > N (for all n > N)

where sn(x) is the nth partial sum:

sn(x) = a0 + aa(x − x0) + · + an(x − a0)n

and Rn(xp) is the remainder.

Rn(x) = an+1(x − x0)n+1 + an+2(x − x0)n+2 + . . .

The convergence interval is |x − x0| < R (radius of convergence). This means that in the case
of convergence, we can approximate the sum s(x1) by sn(x1) as accurately as we want by taking
a large enough n.

f(x) is called analytic at a point x = x0 if it can be represented by a power series in powers
of x − x0 with a positive radius of convergence R. This means that a real analytic function
has to be an infinitely differentiable function.

4.13 Derivative of ex

Taylor series expansion of eh near h = 0:

eh = 1 + h + h2

2! + h3

3! + . . . =⇒ lim
h→0

eh − 1
h

= 1 =⇒ d

dx
ex = ex
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4.14 Hyperbolic Functions - Definitions

sinh x = ex − e−x

2

cosh x = ex + e−x

2

tanh x = ex − e−x

ex + e−x

cosh2x − sinh2x = 1

4.15 Partial Derivatives

fx(x,y) = lim
h→0

f(x + h,y) − f(x,y)
h

fy(x,y) = lim
h→0

f(x,y + h) − f(x,y)
h

fx = fx(x,y) = ∂

∂x
f(x,y)

fy = fx(x,y) = ∂

∂y
f(x,y)

Example,

f(x,y) = x2y − 10y2z3 + 43x − 7tan(4y)

∂

∂x
f(x,y,z) = 2xy + 43

∂

∂y
f(x,y,z) = x2 − 20yz3 − 28sec2(4y)

∂

∂z
f(x,y,z) = −30y2z2

4.16 SymPy Code

Compute the derivative of y with respect to x for the following functions: y = x2

1 import sympy as sp
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from IPython.display import display, Math
5 from sympy import sqrt, diff
6 from sympy import sin, cos, tan, ln, trigsimp, expand_trig, simplify
7 from sympy import sinh, cosh
8
9 x = sp.symbols(’x’)

10 y = x**2
11 der = diff(y, (x, 1)) # first derivative of y wrt x
12 display(der)
13
14 y = sin(x)
15 der = diff(y, (x,2)) # second derivative of y wrt x
16 display(der)



chapter 4. differentiation 22

17
18 y = ln(x)
19 der = diff(y, (x,1)) # first derivative of y wrt x
20 display(der)
21 value_at_4 = der.subs(x, 4) # evaluate value of the derivative at x = 4
22 display(value_at_4)
23
24 a = sp.symbols(’a’)
25 y = a**x
26 der = diff(y, x) # derivative of y wrt x
27 display(der)

1 2*x
2 −sin(x)
3 1/x
4 1/4

1 import sympy as sp
2 from IPython.display import display, Math
3 from sympy import sin, cos, tan, exp, E, I, simplify, integrate, latex
4 from sympy.abc import x, y, z, t, w
5
6 fun = E**(x)
7 latex_fun = latex(fun)
8 display(fun.series(x,n=10))
9 display(latex_fun)

10
11 fun = E**(I*w*x)
12 display(fun.series(x,n=10))
13
14 fun = cos(w*x)
15 s1 = fun.series(x,n=10)
16 display(s1)
17
18 fun = I*sin(w*x)
19 s2 = fun.series(x,n=10)
20 display(s2)
21
22 display(s1+s2)

1 + x + x2

2 + x3

6 + x4

24 + x5

120 + x6

720 + x7

5040 + x8

40320 + x9

362880 + O
(
x10

)
= ex

1 + iwx − w2x2

2 − iw3x3

6 + w4x4

24 + iw5x5

120 − w6x6

720 − iw7x7

5040 + w8x8

40320 + iw9x9

362880 + O
(
x10

)
= eiwx

1 − w2x2

2 + w4x4

24 − w6x6

720 + w8x8

40320 + O
(
x10

)
= cos(wx)

iwx − iw3x3

6 + iw5x5

120 − iw7x7

5040 + iw9x9

362880 + O
(
x10

)
= isin(wx)

1+iwx−w2x2

2 − iw3x3

6 +w4x4

24 + iw5x5

120 −w6x6

720 − iw7x7

5040 + w8x8

40320+ iw9x9

362880+O
(
x10

)
= cos(wx)+isin(wx)
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