CHAPTER

SECOND ORDER ORDINARY
DIFFERENTIAL EQUATION

A second-order equation, quite a mess,

With derivatives causing plenty of distress.

But Euler, Cauchy, and Lagrange helped evolve,
Elegant methods to solve and resolve!

As noted in the previous chapter, the order of a differential equation is defined as the order
of the highest derivative of the unknown function that appears in the equation. Therefore,
a second-order differential equation is one in which the second derivative of the unknown
function occurs, and no derivative of higher order is present.

Second order differential equations have a variety of applications in science and engineering
such as vibrations and electric circuits. There are a host of multi dimensional engineering models
that incorporate second order differential equations including wave motion, flow mechanics,
Maxwell’s electro-magnetic equations and Schroedinger equation in Nuclear Physics.

7.1 2nND OrDER LiINEaAR ODE

The standard form of a 2nd Order ODE is:

y +px)y +q(x)y=r(z)| Itislineariny,y and y” (7.1.1)

If r(z) = 0, the ODE is homogeneous, else it is non-homogeneous. When the coefficients a and b
are constant:

y// + ayl +by=0 (7.1.2)

Ax

Choose e’ as a solution and substitute in the homogeneous ODE.

1
A2+ ar+b)eM =0 = A\24+a\+b=0 — Azi(—ai\/a2—4b>

yp = c1eMT + e (general solution to the homogeneous ODE)

y1, corresponding to A, and y2, corresponding to Ao, are linearly independent and are
called basis of solutions. The superposition principle also called the linearity principle, i.e.,
the homogeneous solution is a combination of y; and y» is true only for linear homogeneous ODE.

The arbitrary constants c; and cp are determined from the initial conditions:
y(xo) =ko y (z0) = k1

A particular solution is obtained if we assign specific values to ¢ and c».
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7.2 LAGRANGE’s METHOD OF REDUCTION OF ORDER

Consider a linear homogeneous 2nd Order ODE in its standard form :

y +p(x)y +q(z)y=0 (7.2.1)

If 41 is a basis solution , we can find y» as follows:

Y = e)\l‘

Let yo = uy;

Yo = y1 +uy,

Yo =u Y1+ 2u'yy +uyy

Substituting,

(w1 +2u'yy +uyy) +p(u y1 +uyy) + q(uyr) =0
yru + (205 +py )’ + (yy +pyh + qya)u=0

b2

tu B tpyr
At

LetU =

, 2y
U -I—U<yl—|-p> =0
1

U’ 2y,1
- = = _|_
U’ 2y
Fd:v +/ (5;) dxr = —pdx

In|U|+2In|y| = —/pd:v

U 0

|y =~ [ pda

Uy} =el e
U= %ef_pdx
Y1
u:/Uda:
Y2 = yl/de
1
Y2 —yl/fzef P gy,
Y1
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7.3 HomoceNEOUs LINEAR ODE witH CoNsTANT COEFFICIENTS

Case 1: 2 Real Roots when a?—4b>0
Case 2: Double Root when a?—4b=0
Case 3: Complex Conjugate Roots when a? —4b <0

Case 1: 2 Real Roots when a? — 4b > 0. The general solution is given by:

y1 =M gy =M
1 1
_(_ 2 _ oy Sa2
)\1—2( a+ﬂ) )\2—2< a a 4b>
yn = c1eM + ce™” (7.3.1)
Case 2: |\ = _27 Y1 = e~ % | Determine y2 using the method of reduction of order.

2

—ax

Yy =e¢€ 2
1 f—pdz —az 1 f—adm —ar ax ,—azx —az
y2=u [ —e de=e2 | —e dr=e 2 [e"e “dr =xe 2
Y

1 (e7)

— _a
Yp = C1€ az/2 | cope” 37

yp = (c1+ 0256)6_‘”/2

Case 3: )\:—gj:iw,w:\/\az—élb\

U1 — eMT _ (=g Hiw)r _ =5 jiwx
Yo — M2 _ (—g-iw)r _ = —iwz

, N2 (i3 2 4 3.5
em_1+m—|—(2;c!)+(Z§!)—|—...—(1—z!—|—z!+...)+i(w—§!—z|—i—...)—cosx—i—isinx

e = coswx + isinwz ‘ (de Moivre’s theorem) and E (Euler’s Identity)

Any real solution is a linear combination of the real and imaginary parts:

azx

y=e 2 (cicoswzx + casinwz)| c1, cp are constants

7.4 FEuLeEr-CaucHY EQuATIONS

The Euler-Cauchy equation is of the form:

:c2y” + axy, + by = 0| where a,b are constants (7.4.7)

1 m—2

Lety =2 = y,:mxmf = y//:m(m—l)az

*m(m —1)a™ 2 +azma™ 1 +ba™ =0 = m*+(a—1)m+b=0

and substituting

1 1
mzi(lfa):lz Z(afl)be
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Case 1: Roots are distinct. The basis solutions are :

yi(z) =2z y2(x) = 2?2, the general solution is given by, |y = c1z"* + cox™"?

Case 2: Double roots.

a2 y=0

. . a
Use method of reduction of order, y2 = uy; and with |p=—

I 1 [ pdx
U:y%ef pd u:/Uda: ygzyl/Udac ygzyl/y%ef pdz g,

a

a - 1
/pdw = /—da: = alng = e P = gmalne _ et _ pma -
x

x(l
11 1 1 1 1
yix x4 gl x X

Y2 :yl/Udar:x%(l_a)lnw

1
yp = (c1+ czlnx)xi(l_“) c1,co are constants

7.5 Tuae WRONSKIAN

Two solutions y; and ¥ are linearly dependent if their Wronkskian W is 0.

W(y1,y2) = Y192 — y2y1 =0
Because if the solutions are dependent, y; = ky2, where k is a constant

= W(y1,¥2) = y1ys — y2y1 = kyoys — Y2kys =0

The Wronksian is expressed as a Wronkski Determinant:

Yy Y2

4

W(y1,y2) = /
( ) Y1 Ys

7.6 NoN-HoMOoGENEOUs ODE
Consider the following non-homogeneous ODE:

Yy +p)y +q(z)y=r(x)
The complete solution is the sum of homogeneous (y;) and particular (y,)solutions.

y(z) = yp(z) + yp(x) where yp, = c1y1 + coy2 (general solution)

37

(7.5.1)

Yp is a solution of the non-homogeneous equation without any constants. A particular solution is

obtained by assigning specific values to the constants. The Method of Undetermined Coeffcients
is an approach to finding a particular solution to nonhomogeneous ODEs. If the term in r(x)

contains the following term, the choice for y,(z) is given by:
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Term in r(x) Choice for y,(x)
ke*® Ce™™
Ka"(n=0,1,...) Kpa"+ Kp_12" T+ ...+ K1z + K
kcoswz or ksinwx Kcoswx + Msinwx
ke*®coswz or ke®*sinwx e (Kcoswz + M sinwz)

7.7 PARTICULAR SOLUTION BY VARIATION OF PARAMETERS (LAGRANGE)

The particular solution for the standard form ODE is derived as follows:
y' +p@)y +q(@)y =r(z)
Find a pair of functions u; (z) and ug(x) such that:

Yp() = u1(z)y1(x) +uz(2)y2(r) = y,(x) = ugy1 +ury; +ugye +u2ys

Set constraint, ull Y1+ u;yg =0

yp(2) = ury; +uzyy

yp () = uyyy +ury; +ugys +uzys

Substituting,

(uryy +uryr +uays +uays) +p(uryy +uays) + q(urys +uzys) =r
(91 +py1 +ayn)ur + (y5 +pys + qy2)uz + (uyy) +upyh) =

Since y1 and y9 are solutions to the homogeneous ODE,

uiy) +ugyy =

We now have the following simultaneous equations:

“llyl + U,2312 =0

uLy) +ugyy =7

Solving,
U = yar _ Yr
11— 7 7 — T ixr
Y1Yo — Y192 w
’ yir y1ir
u2 = _— R

Y1y — Y192 w

Yyar y1r
yp(x) = —y1/wdw+y2/wdm’

7.8 SymPy

Solve the following non-homogeneous ordinary differential equation:
2

d d )
2y(z) = 3—y(z)+ ——sylz)=2

y(@) = 37-y(@) + 7 5y(@)

import sympy as sp

from IPython.display import display, Math

# Variables and function
X sp.symbols(’x’)
y sp.Function(’y’)

# Nonhomogeneous ODE: y’’ - 3 y’ + 2 y = x/2
ode = sp.Eq(sp.diff(y(x), x, 2) - 3*xsp.diff(y(x), x) + 2xy(x), xxx2)
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# Solve full ODE
soln_full = sp.dsolve(ode)

# Extract complementary (homogeneous) and particular parts
# dsolve returns: Eq(y(x), Clxexp()+C2xexp() + particular)
d rhs = soln_full.rhs

Cl, C2 = sp.symbols(’Cl C2’)

# The homogeneous part is the expression containing Cl, C2
soln_homo = rhs.expand().coeff(C1l)*Cl + rhs.expand().coeff(C2)*C2

# The particular solution is the rest (remove terms with Cl, C2)
be] soln_part = sp.simplify(rhs - soln_homo)

) # Display results
print(sp.latex(ode))
print(sp.latex(soln_homo))

i print (sp.latex(soln_part))

9 print(sp.latex(soln_full))

30

il display (Math(r"\textbf{Homogeneous solution: } y_h = " + sp.latex(soln_homo)))
W display (Math(r"\textbf{Particular solution: } y_p = " + sp.latex(soln_part)))
k] display (Math(r"\textbf{General solution: } y = " + sp.latex(rhs)))

W W
a R

print(sp.latex(soln_full))
soln_full

W
(o))

General solution: )
Ce® 20z %7 3% 7
y=Cre" 4+ Cqe +2+2+4

Homogeneous solution:
yp = Cre” + Coe®®

Particular solution:
=y Ty Ty

General (or Full) solution:

2
3 7
y(x) :Cl€x+0262x+%+§+z
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