
chapter 7

Second Order Ordinary
Differential Equation

A second-order equation, quite a mess,
With derivatives causing plenty of distress.

But Euler, Cauchy, and Lagrange helped evolve,
Elegant methods to solve and resolve!

As noted in the previous chapter, the order of a differential equation is defined as the order
of the highest derivative of the unknown function that appears in the equation. Therefore,
a second-order differential equation is one in which the second derivative of the unknown
function occurs, and no derivative of higher order is present.

Second order differential equations have a variety of applications in science and engineering
such as vibrations and electric circuits. There are a host of multi dimensional engineering models
that incorporate second order differential equations including wave motion, flow mechanics,
Maxwell’s electro-magnetic equations and Schroedinger equation in Nuclear Physics.

7.1 2nd Order Linear ODE

The standard form of a 2nd Order ODE is:

y
′′ + p(x)y′ + q(x)y = r(x) It is linear in y, y′ and y′′ (7.1.1)

If r(x) = 0, the ODE is homogeneous, else it is non-homogeneous. When the coefficients a and b
are constant:

y
′′ + ay

′ + by = 0 (7.1.2)

Choose eλx as a solution and substitute in the homogeneous ODE.

(λ2 + aλ + b)eλx = 0 =⇒ λ2 + aλ + b = 0 =⇒ λ = 1
2
(
−a ±

√
a2 − 4b

)
yh = c1eλ1x + c2eλ2x (general solution to the homogeneous ODE)

y1, corresponding to λ1, and y2, corresponding to λ2, are linearly independent and are
called basis of solutions. The superposition principle also called the linearity principle, i.e.,
the homogeneous solution is a combination of y1 and y2 is true only for linear homogeneous ODE.
The arbitrary constants c1 and c2 are determined from the initial conditions:

y(x0) = k0 y
′(x0) = k1

A particular solution is obtained if we assign specific values to c1 and c2.

34
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7.2 Lagrange’s Method of Reduction of Order

Consider a linear homogeneous 2nd Order ODE in its standard form :

y
′′ + p(x)y′ + q(x)y = 0 (7.2.1)

If y1 is a basis solution , we can find y2 as follows:

y1 = eλx

Let y2 = uy1

y
′
2 = u

′
y1 + uy

′
1

y
′′
2 = u

′′
y1 + 2u

′
y

′
1 + uy

′′
1

Substituting,

(u′′
y1 + 2u

′
y

′
1 + uy

′′
1 ) + p(u′

y1 + uy
′
1) + q(uy1) = 0

y1u′′ + (2y′
1 + py1)u′ + (y′′

1 + py′
1 + qy1)u = 0

u
′′ + u

′ 2y
′
1 + py1
y1

= 0

Let U = u
′

U
′ + U

(
2y

′
1

y1
+ p

)
= 0

U ′

U
= −

(
2y

′
1

y1
+ p

)
∫

U ′

U
dx +

∫ (2y
′
1

y1

)
dx = −pdx

ln |U | + 2ln |y1| = −
∫

pdx

ln |Uy2
1| = −

∫
pdx

Uy2
1 = e

∫
−pdx

U = 1
y2

1
e
∫

−pdx

u =
∫

Udx

y2 = y1

∫
Udx

y2 = y1

∫ 1
y2

1
e
∫

−pdxdx
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7.3 Homogeneous Linear ODE with Constant Coefficients
Case 1: 2 Real Roots when a2 − 4b > 0
Case 2: Double Root when a2 − 4b = 0
Case 3: Complex Conjugate Roots when a2 − 4b < 0

Case 1: 2 Real Roots when a2 − 4b > 0. The general solution is given by:

y1 = eλ1x y2 = eλ2x

λ1 = 1
2
(
−a +

√
a2 − 4b

)
λ2 = 1

2
(
−a −

√
a2 − 4b

)
yh = c1eλ1x + c2eλ2x (7.3.1)

Case 2: λ1 = −a

2 , y1 = e− ax
2 Determine y2 using the method of reduction of order.

y1 = e
−ax

2

y2 = y1

∫ 1
y2

1
e
∫

−pdxdx = e
−ax

2

∫ 1(
e

−ax
2
)2 e

∫
−adxdx = e− ax

2

∫
eaxe−axdx = xe− ax

2

yh = c1e−ax/2 + c2xe− a
2 x

yh = (c1 + c2x)e−ax/2

Case 3: λ = −a

2 ± iw,w =
√

|a2 − 4b|

y1 = eλ1x = e(− a
2 +iw)x = e− ax

2 eiwx

y2 = eλ2x = e(− a
2 −iw)x = e− ax

2 e−iwx

eix = 1 + ix + (ix)2

2! + (ix)3

3! + . . . = (1 − x2

2! + x4

4! + . . .) + i(x − x3

3! − x5

5|
+ . . .) = cosx + isinx

eiwx = coswx + isinwx (de Moivre’s theorem) and eiπ = −1 (Euler’s Identity)

Any real solution is a linear combination of the real and imaginary parts:

y = e− ax
2 (c1coswx + c2sinwx) c1, c2 are constants

7.4 Euler-Cauchy Equations

The Euler-Cauchy equation is of the form:

x2y
′′ + axy

′ + by = 0 where a,b are constants (7.4.1)

Let y = xm =⇒ y
′ = mxm−1 =⇒ y

′′ = m(m − 1)xm−2 and substituting
x2m(m − 1)xm−2 + axmxm−1 + bxm = 0 =⇒ m2 + (a − 1)m + b = 0

m = 1
2(1 − a) ±

√
1
4(a − 1)2 − b
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Case 1: Roots are distinct. The basis solutions are :

y1(x) = xm1 y2(x) = xm2 , the general solution is given by, y = c1xm1 + c2xm2

Case 2: Double roots.

y1 = x
1
2 (1−a)

y
′′ + a

x
y

′ + (1 − a)2

4x2 y = 0

Use method of reduction of order, y2 = uy1 and with p = a

x

U = 1
y2

1
e
∫

−pdx u =
∫

Udx y2 = y1

∫
Udx y2 = y1

∫ 1
y2

1
e
∫

−pdxdx

∫
pdx =

∫
a

x
dx = alnx =⇒ e

∫
−pdx = e−alnx = elnx−a = x−a = 1

xa

U = 1
y2

1

1
xa

= 1
x1−a

1
xa

= 1
x

=⇒ u =
∫

Udx =
∫ 1

x
dx = lnx

y2 = y1

∫
Udx = x

1
2 (1−a)lnx

yh = (c1 + c2lnx)x
1
2 (1−a) c1, c2 are constants

7.5 The Wronskian

Two solutions y1 and y2 are linearly dependent if their Wronkskian W is 0.

W (y1,y2) = y1y
′
2 − y2y

′
1 = 0

Because if the solutions are dependent, y1 = ky2, where k is a constant
=⇒ W (y1,y2) = y1y

′
2 − y2y

′
1 = ky2y

′
2 − y2ky

′
2 = 0

The Wronksian is expressed as a Wronkski Determinant:

W (y1,y2) =
∣∣∣∣∣y1 y2
y

′
1 y

′
2

∣∣∣∣∣ (7.5.1)

7.6 Non-homogeneous ODE

Consider the following non-homogeneous ODE:

y
′′ + p(x)y′ + q(x)y = r(x)

The complete solution is the sum of homogeneous (yh) and particular (yp)solutions.

y(x) = yh(x) + yp(x) where yh = c1y1 + c2y2 (general solution)

yp is a solution of the non-homogeneous equation without any constants. A particular solution is
obtained by assigning specific values to the constants. The Method of Undetermined Coeffcients
is an approach to finding a particular solution to nonhomogeneous ODEs. If the term in r(x)
contains the following term, the choice for yp(x) is given by:
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Term in r(x) Choice for yp(x)
keγx Ceγx

Kxn(n = 0,1, . . .) Knxn + Kn−1xn−1 + . . . + K1x + K0
kcoswx or ksinwx Kcoswx + Msinwx

keαxcoswx or keαxsinwx eαx(Kcoswx + Msinwx)

7.7 Particular Solution by Variation of Parameters (Lagrange)

The particular solution for the standard form ODE is derived as follows:

y′′ + p(x)y′ + q(x)y = r(x)

Find a pair of functions u1(x) and u2(x) such that:

yp(x) = u1(x)y1(x) + u2(x)y2(x) =⇒ y
′
p(x) = u

′
1y1 + u1y

′
1 + u

′
2y2 + u2y

′
2

Set constraint, u
′
1y1 + u

′
2y2 = 0

y
′
p(x) = u1y

′
1 + u2y

′
2

y
′′
p (x) = u

′
1y

′
1 + u1y

′′
1 + u

′
2y

′
2 + u2y

′′
2

Substituting,
(u′

1y
′
1 + u1y

′′
1 + u

′
2y

′
2 + u2y

′′
2 ) + p(u1y

′
1 + u2y

′
2) + q(u1y1 + u2y2) = r

(y′′
1 + py′

1 + qy1)u1 + (y′′
2 + py′

2 + qy2)u2 + (u′
1y′

1 + u′
2y′

2) = r

Since y1 and y2 are solutions to the homogeneous ODE,
u′

1y′
1 + u′

2y′
2 = r

We now have the following simultaneous equations:
u

′
1y1 + u

′
2y2 = 0

u′
1y′

1 + u′
2y′

2 = r

Solving,

u
′
1 = − y2r

y1y
′
2 − y

′
1y2

= −y2r

W

u
′
2 = − y1r

y1y
′
2 − y

′
1y2

= −y1r

W

yp(x) = −y1

∫
y2r

W
dx + y2

∫
y1r

W
dx

7.8 SymPy

Solve the following non-homogeneous ordinary differential equation:

2y(x) − 3 d

dx
y(x) + d2

dx2 y(x) = x2

1 import sympy as sp
2 from IPython.display import display, Math
3
4 # Variables and function
5 x = sp.symbols(’x’)
6 y = sp.Function(’y’)
7
8 # Nonhomogeneous ODE: y’’ − 3 y’ + 2 y = x^2
9 ode = sp.Eq(sp.diff(y(x), x, 2) − 3*sp.diff(y(x), x) + 2*y(x), x**2)
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10
11 # Solve full ODE
12 soln_full = sp.dsolve(ode)
13
14 # Extract complementary (homogeneous) and particular parts
15 # dsolve returns: Eq(y(x), C1*exp()+C2*exp() + particular)
16 rhs = soln_full.rhs
17 C1, C2 = sp.symbols(’C1 C2’)
18
19 # The homogeneous part is the expression containing C1, C2
20 soln_homo = rhs.expand().coeff(C1)*C1 + rhs.expand().coeff(C2)*C2
21
22 # The particular solution is the rest (remove terms with C1, C2)
23 soln_part = sp.simplify(rhs − soln_homo)
24
25 # Display results
26 print(sp.latex(ode))
27 print(sp.latex(soln_homo))
28 print(sp.latex(soln_part))
29 print(sp.latex(soln_full))
30
31 display(Math(r"\textbf{Homogeneous solution: } y_h = " + sp.latex(soln_homo)))
32 display(Math(r"\textbf{Particular solution: } y_p = " + sp.latex(soln_part)))
33 display(Math(r"\textbf{General solution: } y = " + sp.latex(rhs)))
34
35 print(sp.latex(soln_full))
36 soln_full

General solution:
y = C1ex + C2e2x + x2

2 + 3x

2 + 7
4

Homogeneous solution:
yh = C1ex + C2e2x

Particular solution:
yp = x2

2 + 3x

2 + 7
4

General (or Full) solution:

y(x) = C1ex + C2e2x + x2

2 + 3x

2 + 7
4
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