SECOND ORDER ORDINARY DIFFERENTIAL EQUATION

A second-order equation, quite a mess, With derivatives causing plenty of distress. But Euler, Cauchy, and Lagrange helped evolve, Elegant methods to solve and resolve!

As noted in the previous chapter, the order of a differential equation is defined as the order of the highest derivative of the unknown function that appears in the equation. Therefore, a second-order differential equation is one in which the second derivative of the unknown function occurs, and no derivative of higher order is present.

Second order differential equations have a variety of applications in science and engineering such as vibrations and electric circuits. There are a host of multi dimensional engineering models that incorporate second order differential equations including wave motion, flow mechanics, Maxwell's electro-magnetic equations and Schroedinger equation in Nuclear Physics.

7.1 2ND ORDER LINEAR ODE

The standard form of a 2nd Order ODE is:

$$y'' + p(x)y' + q(x)y = r(x)$$
 It is linear in y, y' and y'' (7.1.1)

If r(x) = 0, the ODE is homogeneous, else it is non-homogeneous. When the coefficients a and b are constant:

$$y'' + ay' + by = 0 (7.1.2)$$

Choose $e^{\lambda x}$ as a solution and substitute in the homogeneous ODE.

$$(\lambda^2 + a\lambda + b)e^{\lambda x} = 0 \implies \lambda^2 + a\lambda + b = 0 \implies \lambda = \frac{1}{2} \left(-a \pm \sqrt{a^2 - 4b} \right)$$

$$y_h = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$$
 (general solution to the homogeneous ODE)

 y_1 , corresponding to λ_1 , and y_2 , corresponding to λ_2 , are linearly independent and are called basis of solutions. The superposition principle also called the linearity principle, i.e., the homogeneous solution is a combination of y_1 and y_2 is true only for linear homogeneous ODE. The arbitrary constants c_1 and c_2 are determined from the initial conditions:

$$y(x_0) = k_0 \quad y'(x_0) = k_1$$

A particular solution is obtained if we assign specific values to c_1 and c_2 .

7.2 Lagrange's Method of Reduction of Order

Consider a linear homogeneous 2nd Order ODE in its standard form:

$$y'' + p(x)y' + q(x)y = 0$$
 (7.2.1)

If y_1 is a basis solution, we can find y_2 as follows:

$$\begin{aligned} y_1 &= e^{\lambda x} \\ \text{Let } y_2 &= uy_1 \\ y_2' &= u'y_1 + uy_1' \\ y_2'' &= u''y_1 + 2u'y_1' + uy_1'' \\ \text{Substituting,} \\ (u''y_1 + 2u'y_1' + uy_1'') + p(u'y_1 + uy_1') + q(uy_1) &= 0 \\ y_1u'' + (2y_1' + py_1)u' + (y_1'' + py_1' + qy_1)u &= 0 \\ u'' + u'\frac{2y_1' + py_1}{y_1} &= 0 \\ \text{Let } U &= u' \\ U' + U\left(\frac{2y_1'}{y_1} + p\right) &= 0 \\ \frac{U'}{U} &= -\left(\frac{2y_1'}{y_1} + p\right) \\ \int \frac{U'}{U} dx + \int \left(\frac{2y_1'}{y_1}\right) dx &= -pdx \\ \ln|U| + 2\ln|y_1| &= -\int pdx \\ \ln|Uy_1^2| &= -\int pdx \\ Uy_1^2 &= e^{\int -pdx} \\ U &= \frac{1}{y_1^2} e^{\int -pdx} \\ u &= \int U dx \end{aligned}$$

$$y_2 = y_1 \int U dx$$

$$y_2 = y_1 \int \frac{1}{y_1^2} e^{\int -pdx} dx$$

7.3 Homogeneous Linear ODE with Constant Coefficients

 $\begin{cases} \text{Case 1: 2 Real Roots when} & a^2-4b>0\\ \text{Case 2: Double Root when} & a^2-4b=0\\ \text{Case 3: Complex Conjugate Roots when} & a^2-4b<0 \end{cases}$

Case 1: 2 Real Roots when $a^2 - 4b > 0$. The general solution is given by:

$$y_{1} = e^{\lambda_{1}x} \quad y_{2} = e^{\lambda_{2}x}$$

$$\lambda_{1} = \frac{1}{2} \left(-a + \sqrt{a^{2} - 4b} \right) \quad \lambda_{2} = \frac{1}{2} \left(-a - \sqrt{a^{2} - 4b} \right)$$

$$y_{h} = c_{1}e^{\lambda_{1}x} + c_{2}e^{\lambda_{2}x}$$
(7.3.1)

Case 2: $\lambda_1 = -\frac{a}{2}, y_1 = e^{-\frac{ax}{2}}$ Determine y_2 using the method of reduction of order.

$$y_1 = e^{\frac{-ax}{2}}$$

$$y_2 = y_1 \int \frac{1}{y_1^2} e^{\int -pdx} dx = e^{\frac{-ax}{2}} \int \frac{1}{\left(e^{\frac{-ax}{2}}\right)^2} e^{\int -adx} dx = e^{-\frac{ax}{2}} \int e^{ax} e^{-ax} dx = xe^{-\frac{ax}{2}}$$

$$y_h = c_1 e^{-ax/2} + c_2 x e^{-\frac{a}{2}x}$$

$$y_h = (c_1 + c_2 x)e^{-ax/2}$$

Any real solution is a linear combination of the real and imaginary parts:

$$y = e^{-\frac{ax}{2}} (c_1 cos wx + c_2 sin wx)$$
 c_1, c_2 are constants

7.4 Euler-Cauchy Equations

The **Euler-Cauchy** equation is of the form:

$$x^2y'' + axy' + by = 0 \quad \text{where } a, b \text{ are constants}$$

$$\text{Let } y = x^m \implies y' = mx^{m-1} \implies y'' = m(m-1)x^{m-2} \text{ and substituting}$$

$$x^2m(m-1)x^{m-2} + axmx^{m-1} + bx^m = 0 \implies m^2 + (a-1)m + b = 0$$

$$m = \frac{1}{2}(1-a) \pm \sqrt{\frac{1}{4}(a-1)^2 - b}$$

Case 1: Roots are distinct. The basis solutions are:

$$y_1(x) = x^{m_1}$$
 $y_2(x) = x^{m_2}$, the general solution is given by, $y = c_1 x^{m_1} + c_2 x^{m_2}$

Case 2: Double roots.

$$y'' + \frac{a}{x}y' + \frac{(1-a)^2}{4x^2}y = 0$$

Use method of reduction of order, $y_2 = uy_1$ and with $p = \frac{a}{x}$

7.5 The Wronskian

Two solutions y_1 and y_2 are linearly dependent if their Wronkskian W is 0.

$$W(y_1, y_2) = y_1 y_2' - y_2 y_1' = 0$$

Because if the solutions are dependent, $y_1 = ky_2$, where k is a constant

$$\implies W(y_1, y_2) = y_1 y_2' - y_2 y_1' = k y_2 y_2' - y_2 k y_2' = 0$$

The Wronksian is expressed as a Wronkski Determinant:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$
 (7.5.1)

7.6 Non-homogeneous ODE

Consider the following non-homogeneous ODE:

$$y'' + p(x)y' + q(x)y = r(x)$$

The complete solution is the sum of homogeneous (y_h) and particular (y_p) solutions.

$$y(x) = y_h(x) + y_p(x)$$
 where $y_h = c_1y_1 + c_2y_2$ (general solution)

 y_p is a solution of the non-homogeneous equation without any constants. A particular solution is obtained by assigning specific values to the constants. The Method of Undetermined Coeffcients is an approach to finding a particular solution to nonhomogeneous ODEs. If the term in r(x) contains the following term, the choice for $y_p(x)$ is given by:

Term in r(x)	Choice for $y_p(x)$
$ke^{\gamma x}$	$Ce^{\gamma x}$
$Kx^n (n=0,1,\ldots)$	$K_n x^n + K_{n-1} x^{n-1} + \ldots + K_1 x + K_0$
$k\cos wx$ or $k\sin wx$	$K\cos wx + M\sin wx$
$ke^{\alpha x}coswx$ or $ke^{\alpha x}sinwx$	$e^{\alpha x}(K\cos wx + M\sin wx)$

7.7 Particular Solution by Variation of Parameters (Lagrange)

The particular solution for the standard form ODE is derived as follows:

$$y'' + p(x)y' + q(x)y = r(x)$$

Find a pair of functions $u_1(x)$ and $u_2(x)$ such that:

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x) \implies y_p^{'}(x) = u_1^{'}y_1 + u_1y_1^{'} + u_2^{'}y_2 + u_2y_2^{'}$$

Set constraint,
$$u_1'y_1 + u_2'y_2 = 0$$

$$\begin{aligned} y_{p}^{'}(x) &= u_{1}y_{1}^{'} + u_{2}y_{2}^{'} \\ y_{p}^{''}(x) &= u_{1}^{'}y_{1}^{'} + u_{1}y_{1}^{''} + u_{2}^{'}y_{2}^{'} + u_{2}y_{2}^{''} \end{aligned}$$

Substituting,

$$(u_1^{'}y_1^{'} + u_1y_1^{''} + u_2^{'}y_2^{'} + u_2y_2^{''}) + p(u_1y_1^{'} + u_2y_2^{'}) + q(u_1y_1 + u_2y_2) = r$$

$$(y_1^{''} + py_1^{'} + qy_1)u_1 + (y_2^{''} + py_2^{'} + qy_2)u_2 + (u_1^{'}y_1^{'} + u_2^{'}y_2^{'}) = r$$

Since y_1 and y_2 are solutions to the homogeneous ODE,

$$u_1'y_1' + u_2'y_2' = r$$

We now have the following simultaneous equations:

$$u_1'y_1 + u_2'y_2 = 0$$

$$u_1'y_1' + u_2'y_2' = r$$

Solving,

$$u_{1}^{'} = -\frac{y_{2}r}{y_{1}y_{2}^{'} - y_{1}^{'}y_{2}} = -\frac{y_{2}r}{W}$$

$$u_{2}^{'} = -\frac{y_{1}r}{y_{1}y_{2}^{'} - y_{1}^{'}y_{2}} = -\frac{y_{1}r}{W}$$

$$y_p(x) = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

7.8 SymPy

Solve the following non-homogeneous ordinary differential equation:

$$2y(x) - 3\frac{d}{dx}y(x) + \frac{d^2}{dx^2}y(x) = x^2$$

```
import sympy as sp
from IPython.display import display, Math

# Variables and function

x = sp.symbols('x')
y = sp.Function('y')

# Nonhomogeneous ODE: y'' - 3 y' + 2 y = x^2
ode = sp.Eq(sp.diff(y(x), x, 2) - 3*sp.diff(y(x), x) + 2*y(x), x**2)
```

```
# Solve full ODE
  soln_full = sp.dsolve(ode)
  # Extract complementary (homogeneous) and particular parts
14
  # dsolve returns: Eq(y(x), C1*exp()+C2*exp() + particular)
16 rhs = soln_full.rhs
  C1, C2 = sp.symbols('C1 C2')
  # The homogeneous part is the expression containing C1, C2
20 soln_homo = rhs.expand().coeff(C1)*C1 + rhs.expand().coeff(C2)*C2
  # The particular solution is the rest (remove terms with C1, C2)
23 soln_part = sp.simplify(rhs - soln_homo)
24
25 # Display results
26 print(sp.latex(ode))
27 print(sp.latex(soln_homo))
28 print(sp.latex(soln_part))
29 print(sp.latex(soln_full))
31 display(Math(r"\textbf{Homogeneous solution: } y_h = " + sp.latex(soln_homo)))
32 display(Math(r"\textbf{Particular solution: } y_p = " + sp.latex(soln_part)))
  display(Math(r"\textbf{General solution: } y = " + sp.latex(rhs)))
34
  print(sp.latex(soln_full))
  soln_full
```

General solution:

$$y = C_1 e^x + C_2 e^{2x} + \frac{x^2}{2} + \frac{3x}{2} + \frac{7}{4}$$

Homogeneous solution:

$$y_h = C_1 e^x + C_2 e^{2x}$$

Particular solution:
$$y_p = \frac{x^2}{2} + \frac{3x}{2} + \frac{7}{4}$$

General (or Full) solution:

$$y(x) = C_1 e^x + C_2 e^{2x} + \frac{x^2}{2} + \frac{3x}{2} + \frac{7}{4}$$