
chapter 8

Higher Order Ordinary
Differential Equation

A higher order whispers through each change,
Derivatives weaving patterns wide and strange.

Roots shape motions—steady, wild, or deep—
In layered laws, the hidden forces sleep.

8.1 Higher Order Homogeneous ODE

The concepts of the 2nd Order ODE can be extended to higher order ODE which has the form:

y(n) + pn−1(x)y(n−1) + . . . + p1(x)y′ + p0(x)y = r(x)

For constant coefficients, y = eλx yields:
λn + an−1λn−1 + · · · + a1λ + a0 = 0 (characteristic equation)

For n distinct roots, there are n distinct basis solutions:

y = c1eλ1x + c2eλ2x + . . . + cneλnx

The Wronkskian is given by:
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Where E = e(λ1+λ2+...+λn)x

The determinant is known as the Vandermonde or Cauchy determinant. W , 0, if and only
if, all the n roots are different.

If λ is a real root of order m, i.e., a real root of multiplicity m, the corresponding solutions are:

eλx, xeλx, x2eλx, . . . , xm−1eλx

Complex roots occur in conjugate pairs λ = γ ± iw since the coefficients of the ODE are real.

y1 = eγx cos(wx), y2 = eγx sin(wx).

If λ = γ + iw is a complex double root (and hence γ − iw also), then the corresponding
linearly independent solutions are: eγx cos(wx), eγx sin(wx), xeγx cos(wx), xeγx sin(wx). The

corresponding general solution is: y = eγx
[
(A1 + A2x)cos(wx) + (B1 + B2x)sin(wx)

]
For complex triple roots, one would obtain two more solutions: x2eγxcoswx x2eγxsinwx

40
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8.2 Higher Order Non-Homogeneous ODE

8.2.1 Method of Undetermined Coefficients

Use the method of undetermined coefficients with a small adjustment. If a term you would
normally choose for yp(x) is already a solution of the homogeneous equation, multiply it by xk,
where k is the smallest positive integer that makes the new term no longer a solution of the
homogeneous equation.

In practice, try:
cxeλx, cx2eλx, . . . , cxkeλx,

substitute into the ODE, and solve for c using the smallest k that works.

8.2.2 Method of Variation of Parameters

Consider the nth–order linear ODE in normalized form

y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = r(x),

and let y1(x), . . . ,yn(x) be a fundamental set of solutions of the corresponding homogeneous
equation. Let W (x) denote their Wronskian.

To find a particular solution of the nonhomogeneous equation, we replace the constants in the
homogeneous solution by functions and obtain the general variation-of-parameters formula:

yp(x) =
n∑

k=1
(−1)k+1 yk(x)

∫
Wk(x)
W (x) r(x)dx

where Wk(x) is the determinant obtained from the Wronskian W (x) by replacing its kth column
with the vector (0,0, . . . ,0,1)T .

In this construction,

■ W (x) ensures linear independence of the fundamental solutions;
■ Wk(x) comes from solving the system for the parameter derivatives using Cramer’s rule;
■ the alternating sign (−1)k+1 reflects the cofactor expansion used in that determinant

calculation.

Thus the formula generalizes the familiar second–order version to any order n, providing a
systematic way to compute a particular solution once the homogeneous solutions are known.

8.3 Series Solutions of Homogeneous ODEs

Higher order linear ODEs with constant coefficients can be solved by algebraic methods as
their solutions are often elementary functions which are known from calculus. For ODEs
with variable coefficients the situation is complicated and their solutions are nonelementary
special functions , e.g., Legendre and Bessel functions.

8.3.1 Power Series Method

y =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3

3 + . . .
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Compute y
′
,y

′′
, . . . ,y(n), substitute in the ODE and compute the coefficients of the powers of

x,x2,x3, . . . ,xn. Equate each of the coefficients to 0 to determine a0,a1,a2, . . . ,an.

8.4 Existence of Power Series Solutions

Consider the following ODE:

y′′ + p(x)y′ + q(x)y = r(x)

If p,q,r have Taylor series representations (analytic) then every solution of the ODE can be
represented by a power series in powers of x − x0 with a positive radius of convergence R. A
power series can be added, multiplied and differentiated term by term.

8.5 Classical Differential Equations

Legendre: (1 − x2)y′′ − 2xy
′ + k(k + 1)y = 0

Chebyshev: (1 − x2)y′′ − xy′ + k2y = 0

Herimite: y′′ − 2xy′ + 2ky = 0

Laguerre: xy′′ + (1 − x)y′ + ky = 0

where k is a constant

8.6 Legendre’s Equation

(1 − x2)y′′ − 2xy
′ + k(k + 1)y = 0 k is a constant

Let y =
∞∑

n=0
anxn and compute y,y

′
,y

′′ to substitute in the above equation.

y
′ =

∞∑
n=1

nanxn−1

y
′′ =

∞∑
n=2

n(n − 1)anxn−2

(1 − x2)
∞∑

n=2
n(n − 1)anxn−2 − 2x

∞∑
n=1

nanxn−1 + k(k + 1)
∞∑

n=0
anxn = 0

Since n(n − 1) is 0 for n = 0 and n = 1, the lower indices start from 2 and 1.
∞∑

n=2
n(n − 1)anxn−2 −

∞∑
n=2

n(n − 1)anxn − 2
∞∑

n=1
nanxn + k(k + 1)

∞∑
n=0

anxn = 0

Let n − 2 = m and use m as the index in the remaining terms as it is a dummy index:
∞∑

m=0
(m + 2)(m + 1)am+2xm −

∞∑
m=2

m(m − 1)amxm − 2
∞∑

m=1
mamxm + k(k + 1)

∞∑
m=0

amxm = 0

a0 and a1 are arbitrary constants, the remaining constants are expressed in terms of these.
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For m = 0,

2a2 + k(k + 1)a0 = 0

a2 = −k(k + 1)
2! a0

For m = 1,

6a3 + [−2 + k(k + 1)]a1 = 0

a3 = −(k − 1)(k + 2)
3! a1

For m ≥ 2,

(m + 2)(m + 1)am+2 = [m(m − 1) + 2m − k(k + 1)]am = (m2 + m − k2 − k)am

am+2 = −(k − m)(k + m + 1)
(m + 1)(m + 2) am for m = 0,1,2, . . .

Notice that the recurrence relation separates the coefficients into two independent groups: all
even coefficients depend only on even ones, and all odd coefficients depend only on odd ones.
Thus the full power series naturally splits into two independent series.

Independence of the solutions. A second-order linear ODE admits exactly two linearly
independent solutions. Setting the initial data (a0 = 1, a1 = 0) produces the even solution y1(x),
while (a0 = 0, a1 = 1) produces the odd solution y2(x). Even and odd functions cannot be
constant multiples of one another, so these two solutions are necessarily independent.

Even-power series. Starting with a0, the recurrence generates only even coefficients:

y1(x) = 1 + a2x2 + a4x4 + · · ·

This series contains exclusively even powers of x and forms one solution of Legendre’s equation.

Odd-power series. Starting with a1, the recurrence generates only odd coefficients:

y2(x) = x + a3x3 + a5x5 + · · ·

This series contains exclusively odd powers of x and forms the second, linearly independent
solution.

General solution. Any solution of the Legendre equation can therefore be expressed as a linear
combination of these two fundamental series:

y(x) = a0 y1(x) + a1 y2(x)

where a0 and a1 are arbitrary constants determined by boundary conditions.

8.6.1 Legendre Polynomials

When k is a nonnegative integer, the recurrence relation

am+2 = −(k − m)(k + m + 1)
(m + 1)(m + 2) am

eventually produces a factor (k − m) in the numerator. Once m = k, this factor becomes zero, so:
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ak+2 = ak+4 = ak+6 = · · · = 0

This means the power series stops after finitely many terms — it becomes a polynomial. If k is
even, the even series y1(x) terminates and becomes a polynomial of degree k. If k is odd, the
odd series y2(x) terminates and becomes a polynomial of degree k.

These finite series are the Legendre polynomials, denoted by Pk(x). Because they are polynomials,
they are valid for all x (no convergence issues).

A common normalization is to choose the leading coefficient (the coefficient of xk) as

ak = (2k)!
2k(k!)2

To find the remaining coefficients, we use the recurrence in reverse:

am = − (m + 1)(m + 2)
(k − m)(k + m + 1) am+2 m < k

Example 1: m = k − 2

ak−2 = − k(k − 1)
2(2k − 1) ak = (2k − 2)!

2k(k − 1)!(k − 2)!

Example 2: m = k − 4

ak−4 = (k − 2)(k − 3)
4(2k − 3) ak−2 = (2k − 4)!

2k 2!(k − 2)!(k − 4)!

In general, the coefficients are

ak−2m = (−1)m (2k − 2m)!
2k m! (k − m)! (k − 2m)!

m = 0,1,2, . . . ,

⌊
k

2

⌋

Thus the Legendre polynomial can be written as

Pk(x) =
⌊k/2⌋∑
m=0

(−1)m (2k − 2m)!
2k m! (k − m)! (k − 2m)!

xk−2m ⌊k/2⌋ is floor of k/2

8.7 Frobenius Method

Many important second–order ODEs have coefficients that are not analytic at the point of interest.
A function f is said to be analytic at x0 if it can be represented by a convergent power series in
some neighborhood of x0. That is, there exists R > 0 such that for all |x − x0| < R,

f(x) =
∞∑

n=0

f (n)(x0)
n! (x − x0)n,

and the series converges to f(x).

In simple terms, analytic functions are infinitely differentiable and are equal to their Taylor series
(not merely approximated by them). Examples include polynomials, ex, sinx, cosx, and rational
functions away from singularities. Non-analytic examples include |x|, functions with corners or
cusps, and piecewise-defined functions with jumps.

Consider the ODE:

y′′ + b(x)
x

y′ + c(x)
x2 y = 0, where b(x) and c(x) are analytic at x = 0.
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Although b(x) and c(x) are analytic, the coefficients b(x)
x and c(x)

x2 are not analytic at x = 0. Such
equations have a regular singular point at x = 0, and can be handled using the Frobenius method.

Series Substitution

The Frobenius method seeks a solution of the form

y(x) = xr
∞∑

m=0
amxm a0 , 0,

where r may be real or complex.

Multiplying the ODE by x2 gives
x2y′′ + xb(x)y′ + c(x)y = 0.

Expand

b(x) =
∞∑

m=0
bmxm, c(x) =

∞∑
m=0

cmxm,

and compute

y(x) = xr
∞∑

m=0
amxm

y′(x) =
∞∑

m=0
(m + r)amxm+r−1

y′′(x) =
∞∑

m=0
(m + r)(m + r − 1)amxm+r−2

Substituting into the ODE and collecting terms gives, for the lowest power of x,[
r(r − 1) + b0r + c0

]
a0 = 0.

Because a0 , 0, we obtain the indicial equation
r2 + (b0 − 1)r + c0 = 0.

Let its roots be r1 and r2.

Resulting Solutions

The Frobenius method yields a fundamental set of solutions, depending on the relationship
between r1 and r2.

Distinct roots not differing by an integer

y1(x) = xr1(a0 + a1x + a2x2 + · · ·),
y2(x) = xr2(A0 + A1x + A2x2 + · · ·).

Double root

This happens when (b0 − 1)2 = 4c0.
y1(x) = xr(a0 + a1x + a2x2 + · · ·),
y2(x) = y1(x) lnx + xr(A0 + A1x + A2x2 + · · ·).

Roots differing by an integer

Assume r1 > r2 and r1 − r2 ∈ Z.
y1(x) = xr1(a0 + a1x + a2x2 + · · ·),
y2(x) = k y1(x) lnx + xr2(A0 + A1x + A2x2 + · · ·),

where the constant k may be zero (so the logarithmic term may or may not appear depending
on the recurrence).
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In cases 2 and 3, the second independent solution can also be obtained by reduction of order.

8.8 Bessel’s Equation

We study Bessel’s differential equation:

x2y′′ + xy′ + (x2 − ν2)y = 0 ν ≥ 0

Frobenius Ansatz

Ansatz is an assumed functional form for the solution, chosen so that it can be substituted into
the equation to determine unknown coefficients or parameters.

Seek a solution of the form:

y(x) =
∞∑

m=0
amxm+r a0 , 0

Then, y′(x) =
∑∞

m=0(m + r)amxm+r−1, y′′(x) =
∑∞

m=0(m + r)(m + r − 1)amxm+r−2

Substituting into the differential equation and collecting like powers of x yields:
∞∑

m=0

([
(m + r)2 − ν2]

am + am−2
)
xm+r = 0

with the convention a−1 = a−2 = · · · = 0. These coefficients do not exist in the original Frobenius
series

∑∞
m=0 amxm+r, but appear when reindexing the xm+r+2 term. We set them to zero so

that the recurrence relation applies uniformly for m ≥ 2.

Hence the indicial equation (coefficient at m = 0) is:[
r(r − 1) + r − ν2]

a0 = 0

(r2 − ν2)a0 = 0

r = ±ν

The general recurrence (for m ≥ 2) is:

am = − am−2
(m + r)2 − ν2

Case r = ν

With r = ν, the recurrence relation becomes
am = − am−2

m(m + 2ν) , m ≥ 2.

To determine the odd-index coefficients, consider the case m = 1. Since a−1 = 0, the equation
for m = 1 reduces to(

(1 + ν)2 − ν2)
a1 = (2ν + 1)a1 = 0

Because 2ν + 1 , 0, we conclude that:

a1 = 0

The recurrence relation connects each odd coefficient only to the previous odd coefficient. Thus,
from a1 = 0, it follows inductively that all odd-index coefficients vanish:
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a1 = a3 = a5 = · · · = 0.

Letting m = 2k, the recurrence relation becomes, for k ≥ 1:

a2k = − a2k−2
2k(2k + 2ν)

The first few coefficients are:

a2 = − a0
22(ν + 1) , a4 = a0

24 2!(ν + 1)(ν + 2) , . . .

Repeatedly applying the recurrence yields the closed form:

a2k = (−1)k a0 Γ (ν + 1)
22kk!Γ (ν + k + 1)

k ≥ 0.

Here Γ (n) = (n − 1)! when n is a positive integer.

Thus the Frobenius solution corresponding to r = ν is

y1(x) = a0 xν
∞∑

k=0

(−1)k Γ (ν + 1)
22kk!Γ (ν + k + 1)

x2k

Choosing the normalization:

a0 = 1
2ν Γ (ν + 1)

yields the standard Bessel function of the first kind:

Jν(x) =
∞∑

k=0

(−1)k

k!Γ (ν + k + 1)

(
x

2

)2k+ν

Case r = −ν

With r = −ν, the recurrence relation becomes:

am = − am−2
m(m − 2ν) , m ≥ 2

As before, the coefficient a−1 is taken to be zero, and the equation for m = 1 gives:(
(1 − ν)2 − ν2)

a1 = (1 − 2ν)a1 = 0,

so we take a1 = 0. Hence, all odd-index coefficients vanish:

a1 = a3 = a5 = · · · = 0.

Letting m = 2k, the recurrence for the even-index coefficients is:

a2k = − a2k−2
2k (2k − 2ν) , k ≥ 1.

Iterating this relation yields:

a2k = (−1)k a0 Γ (1 − ν)
22kk!Γ (1 − ν + k)

k ≥ 0

Thus the Frobenius solution corresponding to r = −ν is:

y2(x) = a0 x−ν
∞∑

k=0

(−1)k Γ (1 − ν)
22kk!Γ (1 − ν + k)

x2k
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A convenient normalization is:

a0 = 1
2−ν Γ (1 − ν) = 2ν 1

Γ (1 − ν)

which yields the series expansion for the Bessel function J−ν(x):

J−ν(x) =
∞∑

k=0

(−1)k

k!Γ (1 − ν + k)

(
x

2

)2k−ν

When ν is not an integer, the two solutions Jν(x) and J−ν(x) are linearly independent. For
integer ν, the second independent solution involves a logarithmic term and leads to the Neumann
function Yν(x).

8.8.1 Bessel functions for real order ν

To obtain a normalized solution for the Bessel function Jν(x), we choose:

a0 = 1
2νΓ (ν + 1)

The Gamma function

The Gamma function is defined for ν > −1 by:

Γ (ν + 1) =
∫ ∞

0
e−ttν dt

Integrating by parts yields the functional identity:

Γ (ν + 1) = νΓ (ν)

For positive integers n,

Γ (n + 1) = n!

Thus the Gamma function extends the factorial to non-integer values.

Even coefficients

From the Frobenius method we obtain:

a2m = (−1)ma0 Γ (ν + 1)
22mm!Γ (ν + m + 1) , m ≥ 0

The Bessel function Jν(x)

Substituting the coefficients into the Frobenius series gives:

Jν(x) = xν
∞∑

m=0

(−1)m x2m

22m+ν m!Γ (ν + m + 1)

Equivalently,

Jν(x) =
∞∑

m=0

(−1)m

m!Γ (ν + m + 1)

(
x

2

)2m+ν

The function Jν(x) is called the Bessel function of the first kind of order ν.
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Useful identities

[xνJν(x)]′ = xνJν−1(x) [x−νJν(x)]′ = −x−νJν+1(x)
Jν−1(x) + Jν+1(x) = 2ν

x
Jν(x) Jν−1(x) − Jν+1(x) = 2J ′

ν(x)

J1/2(x) =
√

2
πx

sinx J−1/2(x) =
√

2
πx

cosx

8.8.2 General solution

For non-integer ν, the functions Jν(x) and J−ν(x) are linearly independent, and the general
solution of Bessel’s equation is:

y(x) = c1Jν(x) + c2J−ν(x)

When ν = n is an integer, J−n(x) is not independent of Jn(x); in this case the second independent
solution is the Neumann function Yn(x), which contains a logarithmic term.

8.8.3 Bessel functions of the second kind, Y0(x)

For ν = 0, Bessel’s equation becomes:

xy′′ + y′ + xy = 0

The indicial equation has a double root r1 = r2 = 0, so the second linearly independent solution
must be of the form:

y2(x) = J0(x) lnx +
∞∑

m=1
Amxm

Differentiating,

y′
2(x) = J ′

0(x) lnx + J0(x)
x

+
∞∑

m=1
mAmxm−1

y′′
2(x) = J ′′

0 (x) lnx + 2J ′
0(x)
x

− J0(x)
x2 +

∞∑
m=1

m(m − 1)Amxm−2

Substituting y2,y′
2,y′′

2 into the differential equation gives:

(xJ ′′
0 + J ′

0 + xJ0) lnx + 2J ′
0(x) +

∞∑
m=1

m2Amxm−1 +
∞∑

m=1
Amxm+1 = 0

Since J0 satisfies Bessel’s equation,

xJ ′′
0 + J ′

0 + xJ0 = 0

so the lnx term disappears.

Series expansions

J0(x) =
∞∑

m=0

(−1)mx2m

22m(m!)2

J ′
0(x) =

∞∑
m=1

(−1)m2mx2m−1

22m(m!)2 =
∞∑

m=1

(−1)mx2m−1

22m−1m!(m − 1)!

Substitute these into the earlier identity:
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∞∑
m=1

(−1)mx2m−1

22m−2m!(m − 1)! +
∞∑

m=1
m2Amxm−1 +

∞∑
m=1

Amxm+1 = 0

Solving for the coefficients

The constant term x0 appears only in the middle series, so:

A1 = 0

Comparing even powers of x (x2s):

(2s + 1)2A2s+1 + A2s−1 = 0, s = 0,1,2, . . .

Since A1 = 0, we obtain:

A3 = A5 = A7 = · · · = 0

Comparing odd powers of x:

(−1)s+1

22s(s + 1)!s! + (2s + 2)2A2s+2 + A2s = 0

This yields the closed-form expression:

A2m = (−1)m−1

22m(m!)2

(
1 + 1

2 + 1
3 + · · · + 1

m

)
, m = 1,2, . . .

Define the harmonic number

hm = 1 + 1
2 + 1

3 + · · · + 1
m

The second solution is therefore:

y2(x) = J0(x) lnx +
∞∑

m=1

(−1)m−1hm

22m(m!)2 x2m

J0 and y2 are linearly independent on x > 0. The standard form of the second Bessel solution is
defined by

Y0(x) = 2
π

(
y2(x) + (γ − ln2)J0(x)

)
where,

γ = lim
m→∞

(
1 + 1

2 + 1
3 + · · · + 1

m
− lnm

)
= 0.57721566490 . . .

is the Euler–Mascheroni constant.

Thus the Bessel function of the second kind of order 0 is:

Y0(x) = 2
π

[
J0(x)

(
ln x

2 + γ

)
+

∞∑
m=1

(−1)m−1hm

22m(m!)2 x2m

]

8.8.4 Bessel functions of the second kind, Yν(x)

For general real ν, the second solution is defined (for non-integer ν) by:

Yν(x) = Jν(x)cos(νπ) − J−ν(x)
sin(νπ)

For integer n,
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Yn(x) = lim
ν→n

Yν(x)

which produces the required logarithmic term.

Thus the general solution of Bessel’s equation for x > 0 is:

y(x) = C1Jν(x) + C2Yν(x)

8.9 SymPy
1 # Solving Bessel’s equation with SymPy
2 # Demonstrates symbolic solution for general order nu, and a concrete example for

↪→ nu=1.
3 import sympy as sp
4
5 # symbols and function
6 x, nu = sp.symbols(’x nu’)
7 y = sp.Function(’y’)
8
9 # General Bessel’s equation: x^2 y’’ + x y’ + (x^2 − nu^2) y = 0

10 ode_general = sp.Eq(x**2*sp.diff(y(x), x, 2) + x*sp.diff(y(x), x) + (x**2 −
↪→ nu**2)*y(x), 0)

11 print(sp.latex(ode_general))
12
13 # Solve symbolically (returns solution in terms of BesselJ and BesselY)
14 sol_general = sp.dsolve(ode_general)
15 sol_general_simpl = sp.simplify(sol_general.rhs) # RHS is the general solution

↪→ expression
16
17 # Concrete example: nu = 1 (order 1 Bessel equation)
18 ode_nu1 = sp.Eq(x**2*sp.diff(y(x), x, 2) + x*sp.diff(y(x), x) + (x**2 − 1)*y(x), 0)
19 sol_nu1 = sp.dsolve(ode_nu1)
20
21 # Example with initial conditions: y(1)=1, y’(1)=0 for nu=1
22 ics = {y(1): 1, sp.diff(y(x), x).subs(x, 1): 0}
23 sol_nu1_ics = sp.dsolve(ode_nu1, ics=ics)
24
25 # Show results
26 print("General solution (order ’nu’):\n", sol_general_simpl, "\n")
27 print("Solution for nu = 1:\n", sol_nu1.rhs, "\n")
28 print(sp.latex(sol_nu1.rhs))
29 print("Solution for nu = 1 with y(1)=1, y’(1)=0:\n", sol_nu1_ics.rhs, "\n")
30
31 # Also explicitly show the independent basis functions
32 C1, C2 = sp.symbols(’C1 C2’)
33 basis = sp.Matrix([sp.besselj(nu, x), sp.bessely(nu, x)])
34 print("Fundamental solutions (Bessel J and Y):\n", basis)
35
36 # Return objects for inspection if desired
37 sol_general, sol_nu1, sol_nu1_ics, basis

x2 d2

dx2 y(x) + x
d

dx
y(x) +

(
−ν2 + x2

)
y(x) = 0

(Y2 (1) − Y0 (1))J1 (x)
J1 (1)Y2 (1) + J0 (1)Y1 (1) − J1 (1)Y0 (1) − J2 (1)Y1 (1)+ (−J2 (1) + J0 (1))Y1 (x)

J1 (1)Y2 (1) + J0 (1)Y1 (1) − J1 (1)Y0 (1) − J2 (1)Y1 (1)
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