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Preface

“The language God talks” is a phrase attributed to Richard Feynman the distinguished and nobel

prize winning physicist as an encouragement to learn calculus. Mathematics is indeed the

language of science. Italian astronomer and physicist Galileo Galilei had stated "Mathematics is
the language in which God has written the universe."

In 1865, James Clerk Maxwell, a Scottish mathematician at Cambridge University, came up with

his seminal work where he presented mathematical equations that unified electricity, magnetism

and optics that have contributed immensely to our civilisation. Albert Einstein had said, "The
work of James Clerk Maxwell changed the world forever." Maxwell was a brilliant mathematician.

The mathematical tools he had mastered had been developed a century before. While Michael

Faraday and others had been investigating various electrical and magnetic phenonena, Maxwell

looked for patterns and with his mathematics, he was able to synthesize all these phenomena.

Mathematics enables us to explore the connection between creativity and structure. Creativity

flourishes in a formal mathematical structure, helps us sharpen our critical thinking and master

the art of problem solving. One should study mathematics for the same reason that we study

art, literature, history and science. The intellectual achievements of Newton, Gauss, Leibniz,

Ramanujan in mathematics are at par with those of Tagore, Shakespeare and Leonardo da Vinci

in art. Often the usefulness of mathematics is the only thing that is emphasized andmathematics

is viewed as a toolbox, but it is much more than that. Understanding mathematics should be

a desirable objective of everyone one and not limited to students of science and engineering.

Mathematics enables us to be objective, quantitative and succinct in our communication. The

process of problem-solving in mathematics helps us develop patience and resilience.

This book is intended to introduce students of engineering, physics, mathematics, computer

science, and related fields to a comprehensive set of concepts in mathematics that are required

for solving real world problems. Content is ever growing, the curriculum for many students

is pretty much full and time is short and precious. This book provides a crisp and concise

understanding of the fundamental concepts in engineering mathematics that are essential to

comprehend natural and engineered phenomena. The book is described as a handbook as it is
designed to be a ready reference to the fundamental concepts along with their proofs.

The most common misconception about mathematics is that it is a skill that comes naturally.

Most of mathematics is not about natural talent, rather it is about one’s approach to learning.

Just as in any other skill, success comes with practice.

With the advent of symbolic computing, the drudgery has been signficantly reduced.

Throughout the book, examples are listed using sympy, numpy, python and jupyterlab to help

visualize the solutions. The book is somewhat unique in that sense.

The author is a software executive by profession and has a deep interest in quantitative methods.

He has received his degrees of Doctor of Science and Master of Science from the Massachusetts

Institute of Technology after graduating from Indian Institute of Technology, Kharagpur.

I hope you will enjoy reading this book and develop a deep interest in mathematics.

Jaideep Ganguly

Hyderabad, India

Sunday 2
nd

April, 2023
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chapter 1

Symbolic Computation

1.1 Introduction

Most people consider math and physics to be scary beasts from which it is best to keep

one’s distance. Computers, however, can help us tame the complexity and tedious arithmetic

manipulations associated with these subjects. Indeed, math and physics are much more

approachable once you have the power of computers on your side.

Symbolic computation or algebraic computation is a scientific area that refers to the study and

development of algorithms and software for manipulating mathematical expressions and other

mathematical objects. Macsyma is one of the oldest general-purpose computer algebra systems

still in wide use. It was originally developed at MIT’s Project MAC.

SymPy is a Python library for symbolic mathematics. Examples in the book make use of sympy

and python for symbolic computation and visualization. NumPy is a numerical library for

Python, Matplotlib is a plotting library for Python and Jupyterlab is a editor for Python that

makes interactive computing very easy.

You will need Python 3 installed in your computer. Thereafer, you will need to install SymPy,
NumPy, MatplotLib and JupyterLab. In a mac, you can run the following commands from the

shell to install these packages.

1 sudo pip3 install sympy
2 sudo pip3 install numpy
3 sudo pip3 install matplotlib
4 sudo pip3 install jupyterlab

1 import sympy as sp
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from IPython.display import display, Math
5

6 %config Completer.use_jedi = False
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chapter 2

Function

Function, in mathematics, is an expression, rule, or law that defines a relationship between

one variable, the independent variable and another variable, which is the dependent variable.

Functions are essential for formulating physical relationships in the sciences and are ubiquitous

in mathematics.

2.1 Function, Domain & Range

When a value of one variable x depends on another variable y, we say that y is a function of x and
it is written symbolically as:

y = f(x) and pronounced as "y equals f of x"

Formally, a function f, is a rule that assigns an unique value f(x) for each x inD whereD is known

as the Domain and the set of y = f(x), or Y , is known as the Range .

Example:

y = x2

Domain =

[−∞,+∞]
Range =

[0,+∞]

2.2 Piecewise Continuous & Discontinuous Functions

Sometimes a function is described in pieces by using different formulas on different parts of its

domain.

|y|=
{

4x if x≥ 0
−0.5x if x < 0

y is unique for a given x. Such functions are

piecewise continous as there are no "gaps".

3



4 chapter 2. function

y = 1
x− 1

y does not exist for x= 1; The curve is not contin-
uous at x= 1 and the function is discontinous .

2.3 Increasing & Decreasing Functions

Increasing function:

f(x2)> f(x1) when x2 > x1
Example: y = 3x+ 4

Decreasing function

f(x2)< f(x1) when x2 > x1
Example: y =−3x+ 4

2.4 Even & Odd Functions

Even function f(−x) = f(x)
Example: y = x2
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Odd function f(−x) =−f(x)
Example: y = x3

2.5 Types of Functons

Following are some types of functions.

1. Linear Functions f(x) =mx+ b

2. Polynomial Functions f(x) = a0 + a1x+ a2x2 + · · ·an−1xn−1 + anx
n

n= 2→Quadratic, n= 3→ Cubic.

3. Rational Functions f(x) = p(x)/q(x)

4. Algebraic Functions - constructed from polynomials using algebraic operations (+, −, ×,
÷, and roots)

5. Trigonometric functions, e.g., f(x) = sin(x)

6. Exponential Functions, e.g., y = 2x, Logarithmic Functions y = logx5

7. Transcendental Functions - functions that are not expressible as a finite combination of

algebraic operations of addition, subtraction, multiplication, division, raising to a power,

and extracting a root. E.g., logx, sinx, ex and any functions containing them. Such

functions are expressible in algebraic terms only as infinite series. In general, the term

transcendental means nonalgebraic .

2.6 Sums, Differences, Products & Quotients of Func-

tions

Much like numbers, functions can be added, subtracted, multiplied, and divided. By defnition:

(f + g)(x) = f(x) + g(x)
(f − g)(x) = f(x)− g(x)

(fg)(x) = f(x)g(x)
f

g
(x) = f(x)

g(x) where g(x) , 0

2.7 Function Composition

The output from is one function is the input to the second function.

(f ◦ g)(x) = f(g(x))
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2.8 Vertical & Horizontal Scaling, Reflecting a Func-

tion

Following are the transformation equations:

y = cf(x) for c > 1, stretch vertically

y = 1
c
f(x) for c > 1, compress vertically

y = f(cx) for c > 1, stretch horizontally

y = f

(
x

c

)
for c > 1, compress horizontally

y = −f(x) for c = -1, reflect across x axis

y = f(−x) for c = -1, reflect across y axis

2.9 Basic Trigonometric Function Definitions

b = base

p = perpendicular

r = h (hypoetenuse)

b2 + p2 = r2

(Pythagoras)

sine θ = p

h

cosine θ = b

h

tangent θ = p

b
= sin θ

cos θ

cosecant θ = 1
sin θ

secant θ = 1
cos θ

cotangent θ = 1
tan θ

abbreviated as: sin, cos, tan, csc, sec, cot

2.10 Basic Trigonometric Identities

The following identities can be easily derived using the above definitions.

sin2 θ+ cos2 θ = 1

sec2 θ = 1 + tan2 θ

csc2 θ = 1 + cot2 θ

sin (θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2

cos (θ1 + θ2) = cos θ1 cos θ2− sin θ1 sin θ2

c2 = a2 + b2− 2ab cos θ (Law of Cosine)(
sin A

a

)
=
(
sin B

b

)
=
(
sin C

c

)
(Law of Sine)

Where a,b,c are lengths, A,B,C are angles, we have:



[1]: import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Math
from sympy import sqrt, diff, integrate, oo
from sympy import sin, cos, tan, ln, exp, erf, trigsimp, expand_trig, simplify
from sympy import sinh, cosh

%config Completer.use_jedi = False

x = sp.symbols('x')

y = x**2
display(y)

x2

[5]: lamb_y = lamb_y = sp.lambdify(x,y)
x_num = np.linspace(start = -10, stop = 10, num = 20)
y_num = lamb_y(x_num)
display(x_num)
display(y_num)

array([-10. , -8.94736842, -7.89473684, -6.84210526,
-5.78947368, -4.73684211, -3.68421053, -2.63157895,
-1.57894737, -0.52631579, 0.52631579, 1.57894737,
2.63157895, 3.68421053, 4.73684211, 5.78947368,
6.84210526, 7.89473684, 8.94736842, 10. ])

array([100. , 80.05540166, 62.32686981, 46.81440443,
33.51800554, 22.43767313, 13.5734072 , 6.92520776,
2.49307479, 0.27700831, 0.27700831, 2.49307479,
6.92520776, 13.5734072 , 22.43767313, 33.51800554,

46.81440443, 62.32686981, 80.05540166, 100. ])

[7]: plt.plot(x_num, y_num)
plt.savefig("plot.png")
plt.show()
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chapter 3

Limit

In mathematics, a limit is the value that a function or a sequence approaches as the input

approaches some value. Limits are essential to calculus and mathematical analysis, and are

used to define continuity, derivatives, and integrals.

3.1 Definition of Limit

Consider a function f(x) that is defined in a domainD which includes the point c. The function
may or may not be defined at c. If, for all x that is close to c except for c, f(x) is arbitrarily

close to a number L (as close to L as we like), then it is said that f approaches the limit L as x
approaches c and is written as:

lim
x→c

f(x) = L

If the function can be evaluated at c, the limit L is simply f(c). But, there can be situations where

the function is not evaluable at c? For example, the following function cannot be evalauted at

x= 1.
lim
x→1

x2 +x− 2
x− 1

But this function can be easily simplified to:

f(x) = (x− 1)(x+ 2)
x− 1 = x+ 2

→ lim
x→1

f(x) = 3.

3.2 Formal Definition of Limit

Let f(x) be a function that is defined on an

interval that contains x = c, except possibly
at c. Then, lim

x→c
f(x) = L if for every number

ε > 0, there is some number δ > 0 such that,

when 0< |x− a|< δ, |f(x)−L|< ε.

This means that for any number ε > 0
that we pick, one can go to the graph and

sketch two horizontal lines at L+ ε and L− ε.
Then there must be another number δ > 0 that

can be determined to enable us to add in two

vertical lines in the graph a+ δ and a− δ.

3.3 Laws of Limit

Given L,M , c, k are real numbers such that lim
x→c

f(x) = L and lim
x→c

g(x) =M . Then,

9



10 chapter 3. limit

Sum Rule lim
x→c

(f(x) + g(x)) = L+M

Difference Rule lim
x→c

(f(x)− g(x)) = L−M
Constant Rule lim

x→c
(kf(x)) = kL

Product Rule lim
x→c

(f(x)g(x)) = LM

Quotient Rule lim
x→c

f(x)
g(x) = L

M

Power Rule lim
x→c

[f(x)]n = Ln (n > 0)
Root Rule lim

x→c
n
√

(f(x) = n
√

(L) (n > 0)

Examples:

lim
x→3

√
(2x3 + 10 = 8

lim
x→0

√
x2 + 9− 3
x2

The above function is not evaluable at x= 0. The standard trick is to multiply both numerator

and denominator by the conjugate radical expression.√
x2 + 9− 3
x2 =

√
x2 + 9− 3
x2 .

√
x2 + 9 + 3√
x2 + 9 + 3

= 1√
x2 + 9 + 3

= lim
x→0

1√
x2 + 9 + 3

= 1
6

3.4 An Important Limit

Consider the circle with a unit radius.

Area4 OAP < area sector OAP < area4 OAT

1
2sin θ ≤ π12

(
θ

2π

)
≤ 1

2 tan θ (θ is in radians)

1≤ θ
sin θ ≤

1
cos θ

→ 1≥ sin θ
θ ≥ cos θ

Hence,

lim
θ→0

Sin θ

θ
= 1 where θ is in radians (3.4.1)

Now consider the function f(θ) = 1
sin θ . Does it have a limit as t→ θ from either side? As

θ approaches 0, its reciprocal, 1/x, grows without bound and the values of function cycle

repeatedly from -1 to 1. There is no single number L that the function values stay increasingly

close to as θ→ 0. The function has neither a right-hand limit nor a lefthand limit at θ = 0.

3.5 One Sided Limits

lim
x→0+

f(x) = 1
lim
x→0−

f(x) =−1
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3.6 Continuous Function

Function is right-continous at c (continuous from right) if lim
x→c+

f(x) = f(c)
Function is left-continous at c (continuous from left) if lim

x→c−
f(x) = f(c)

A function is continous at c if lim
x→c

f(x) = f(c)

If a function is discontinuous at one or more points of its domain, it is called a discontinuous

function.

3.7 Infinite Limits

lim
x→0+

1
x =∞, lim

x→0−
1
x =−∞

Note that this does not mean that the limit exists as there is no real

number such as∞. It is simply a concise way of saying that the

limit does not exist.

3.8 Rolle’s Theorem

If f is a continuous function on a closed interval

[a,b] and If f(a) = f(b), then there is at least one

point c in (a,b) where f
′(c) = 0.

3.9 Mean Value Theorem

There is at least one number c in the interval

(a,b) such that:

f
′(c) = f(b)− f(a)

b− a



[2]: import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Math
from sympy import sin, cos, tan, trigsimp, expand_trig
from sympy import oo
from sympy import limit

[3]: %config Completer.use_jedi = False

[5]: x = sp.symbols('x')

[6]: y = (x**2 + x - 2) / (x - 1)
lim = limit(y, x, 1)
display(lim)

3

[7]: y = ( (x**2 + 9)**0.5 - 3 ) / x**2
display(y)
lim = limit(y, x, 0)
display(lim)

(
x2 + 9

)0.5 − 3

x2

1

6

[8]: y = sin(x)/x
lim = limit(y, x, 0)
display(lim)

1

1



chapter 4

Derivative

In mathematics, the derivative of a function of a real variable measures the sensitivity to change

of the function value, i.e., the output value with respect to a change in its argument, i.e., the

input value. Derivatives are a fundamental to calculus.

4.1 Definition of a Derivative

Consider the limit: lim
h→0

f(x0 +h)− f(x0)
h

This limit is called the derivative and is written as:

df

dx
= dy

dx
= f

′(x)

Its value at a is represented as: f
′(a) = dy

dx

∣∣∣∣
x=a

A derivative is rate of change, it is the tangent at the point .

A function f(x) is differentiable at x= a if f
′(a) exists and f(x) is called differentiable on

an interval if the derivative exists for each point in that interval. If f(x) is differentiable at

x= a, then f(x) is continuous at x= a.
d

dx
is known as the Differential Operator .

4.2 Derivative of a Polynomial Term

f(x) = xn

f
′(a) = lim

x→a
f(x)− f(a)

x− a
= lim
x→a

xn− an

x− a
xn− an = (x− a)(xn−1 + axn−2 + a2xn−3 + · · ·+ an−2x+ an−1)

f
′(a) = lim

x→a
(xn−1 + axn−2 + a2xn−3 + · · ·an−2x+ an−1) = nan−1

dxn

dx
= nxn−1

and obviously

d

dx
(constant) = 0

13



14 chapter 4. derivative

4.3 Derivatives of a Trigonometric Function

d

dx
(sin(x)) = lim

h→0

sin(x+h)− sin(x)
h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

= sin(x) lim
h→0

cos(h)− 1
h

+ cos(x) lim
h→0

sin(h)
h

From ??, ?? & 3.4.1 we have,

1− cos(h) = 2sin2
(
h

2

)
d

dx
(sin(x)) = sinx(x).0 + cos(x).1

d

dx
(sin(x)) = cos(x)

4.4 Derivative of a log function

Compute
d
dx(ln x)

d

dx
ln x= lim

h→0

ln(x+h)− ln(x)
h

= lim
h→0

ln (x+h)
x

h
= lim
h→0

1
h
ln

(
1 + h

x

)
= lim
h→0

ln

(
1 + h

x

) 1
h

Let h= nx→ 1
h

= 1
n
.
1
x
→ lim

h→0
ln(1 +n)

1
n

1
x = lim

h→0
ln
(
(1 +n)

1
n

) 1
x = 1

x
ln

(
lim
h→0

(1 +n)
1
n

)
d

dx
ln x= 1

x

4.5 Chain Rule

Compute
d
dx(v(u(x)))

dv

dx
= lim
x→0

∆v

∆x
= lim
x→0

(
∆v

∆u
× ∆u

∆x

)
= lim
x→0

(
∆v

∆u

)
× lim
x→0

(
∆u

∆x

)
dv

dx
= dv

du
× du
dx

4.6 Derivative of an exponential function

Compute
d
dx(ax)

Let y = ax

lny = lna

1
y

dy

dx
= lna

d

dx
ax = ax lna

4.7 Implicit Differentiation

In implicit differentiation, we differentiate each side of an equation with two variables (usually

x and y) by treating one of the variables as a function of the other. This calls for using the chain
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rule. Example:

x2 + y2 = 1→ d
dx(x2 + y2) = d

dxx
2 + d

dxy
2 = 2x+ 2y dydx = 0→ dy

dx =−xy

4.8 Product Rule

(fg)′ = lim
h→0

f(x+h)g(x+h)− f(x)g(x)
h

= lim
h→0

f(x+h)g(x+h)− f(x+h)g(x) + f(x+h)g(x)− f(x)g(x)
h

= lim
h→0

f(x+h)(g(x+h)− g(x))
h

+ lim
h→0

g(x)f(x+h)− f(x)
h

(fg)′ = f(x)g′(x) + g(x)f ′(x) (4.8.1)

4.9 Quotient Rule

(
f

g

)′
= lim
h→0

f
′
g− fg′

g2 = lim
h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h
= lim
h→0

1
h

f(x+h)g(x)− f(x)g(x+h)
g(x+h)g(x)

= lim
h→0

1
g(x+h)g(x)

f(x+h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+h)
h

= lim
h→0

(
g(x)f(x+h)− f(x)

h
− f(x)g(x+h)− g(x)

h

)
(
f

g

)′
= f

′
g− fg′

g2 (4.9.1)

4.10 L’Hôpital’s rule

First, need to do mathematical manipulations to get the limit into a l’Hôpital form, i.e., 0/0 or

∞/∞ form. Let f(x) and g(x) be continuous functions on an interval containing x= a, with

f(a) = g(a) = 0. Suppose that f and g are differentiable, and that f
′
and g

′
are continuous. and,

suppose that g
′(a) , 0. Then,

lim
x→a

f(x)
g(x) = lim

x→a
f(x)
g(x) = lim

x→a
f(x)− f(a)
g(x)− g(a)

= lim
x→a

(f(x)− f(a))/(x− a)
(g(x)− f(a))/(x− a)

=
lim
x→a

(f(x)− f(a))/(x− a)
lim
x→a

(g(x)− f(a))/(x− a)

lim
x→a

f(x)
g(x) = f

′(x)
g
′(x) (4.10.1)

4.11 Concave Up (Convex) & Concave Down

Let y = f(x) be twice-differentiable on an interval I . If f” > 0 on I , the graph of f over I is

concave up (also called convex). If f” < 0 on I , the graph of f over I is concave down.
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4.12 Euler’s number

Euler’s number is written as e.

e = lim
n→∞

(
1 + 1

n

)n
= lim
n→0

(1 +n)
1
n =

∞∑
n=0

1
n! such that, lim

h→0

eh− 1
h

= 1

e = 2.718281 . . .

Note:

d

dx
ex = ex

4.13 Hyperbolic Functions

sinh x= ex− e−x

2 (4.13.1)

cosh x= ex + e−x

2 (4.13.2)

tanh x= ex− e−x

ex + e−x
(4.13.3)

cosh2x− sinh2x= 1 (4.13.4)

4.14 Partial Derivatives

fx(x,y) = lim
h→0

f(x+h,y)− f(x,y)
h

fy(x,y) = lim
h→0

f(x,y+h)− f(x,y)
h

fx = fx(x,y) = ∂

∂x
f(x,y)

fy = fx(x,y) = ∂

∂y
f(x,y)

Example,

f(x,y) = x2y− 10y2z3 + 43x− 7tan(4y)

∂

∂x
f(x,y,z) = 2xy+ 43

∂

∂y
f(x,y,z) = x2− 20yz3− 28sec2(4y)

∂

∂z
f(x,y,z) =−30y2z2



[1]: import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Math
from sympy import sqrt, diff
from sympy import sin, cos, tan, ln, trigsimp, expand_trig, simplify
from sympy import sinh, cosh

[2]: %config Completer.use_jedi = False

[3]: x = sp.symbols('x')
y = x**2
der = diff(y, (x, 2)) # 2nd derivative of y wrt x
display(der)

2

[4]: y = sin(x)
der = diff(y, x) # derivative of y wrt x
display(der)

cos (x)

[5]: y = ln(x)
der = diff(y, x) # derivative of y wrt x
display(der)

1

x

[6]: a = sp.symbols('a')
y = a**x
der = diff(y, x) # derivative of y wrt x
display(der)

ax log (a)

[7]: y = sinh(x)
der = diff(y, x) # derivative of y wrt x
display(der)

cosh (x)

[8]: y = cosh(x)
der = diff(y, x) # derivative of y wrt x
display(der)

sinh (x)

[9]: x, y, z = sp.symbols('x y z')
f = (x**2) * y - 10 * (y**2)*(z**3) + 43*x - 7*tan(4*y)
pdx = diff(f,x)
display(pdx)
pdy = simplify(diff(f,y))
display(pdy)
pdz = diff(f,z)
display(pdz)

2xy + 43

x2 − 20yz3 − 28

cos2 (4y)

−30y2z2

1





chapter 5

Integral

Integration, in mathematics, is the technique of finding a function g(x) the derivative of which is

equal to a given function f(x). This is indicated by the integral sign

∫
as in

∫
f(x)dx and is called

the indefinite integral of the function. The symbol dx represents an infinitesimal displacement

along x. Hence,

∫
f(x)dx is the summation of the product of f(x) and dx. The definite integral,

written as

∫ b
a f(x)dx where a and b are called the limits of integration, is equal to g(b)− g(a),

where
d
dxg(x) = f(x).

5.1 Integral

Given a function f(x), an anti-derivative of f(x) is any function g(x) such that g′(x) = f(x). The
most general anti-derivative is called the indefinite integral .∫

f(x)dx= g(x) + cwhere c is a constant of integration

Note the following inequalities.∫
f(x)g(x)dx ,

∫
f(x)dx

∫
g(x)dx

∫
f(x)
g(x)dx ,

∫
f(x)dx∫
g(x)dx

5.2 Common Integrals∫
xndx= x(n+1)

(n+ 1) + c (5.2.1)∫
exdx= ex + c (5.2.2)∫
axdx= ax

ln a
+ c (5.2.3)∫ 1

x
dx= ln|x|+ c (5.2.4)∫

cos(x)dx= sin(x) + c (5.2.5)

19



20 chapter 5. integral

5.3 Substitution Technique∫
18x2 4

√
(6x3 + 5)dx

Let u= 6x3 + 5

→ du= 18x2dx

→
∫

4√u du= u( 1
4 +1)

1
4 + 1

= 4
5u

5
4 = 4

5
(
6x3 + 5

) 5
4

5.4 Integration by Parts

[f(x)g(x)]′ = f(x)g′(x) + f
′(x)g(x)

f(x)g′(x) = [f(x)g(x)]′ − f ′(x)g(x)∫
f(x)g′(x)dx=

∫
[f(x)g(x)]′dx−

∫
f
′(x)g(x)dx

a

∫
f(x)g′(x)dx= f(x)g(x)−

∫
f
′(x)g(x)dx∫

u(x)v(x)dx= u(x)
∫
v(x)−

∫
[u′(x)

∫
v(x)]dx (5.4.1)

Hence, integral of two functions = first function × integral of second function − integral of

( differntiation of the first function × integral of the second function ).

5.5 Definite Integral

A definite integral is a the area under its curve .

∫ b

a
f(x)dx= lim

n→∞

n∑
i=1

f(x∗i )∆x= g(x)
∣∣∣∣b
a

= g(b)− g(a)

where f(x∗i ) is the value at the middle of the strip ∆x.

favg = 1
b− a

∫ b

a
f(x)dx

∫ b

a
f(x)dx= f(c)(b− a) where c is in [a,b]
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5.6 Some Integration Strategies

n Simplify the integrand. E.g., cos2(θ) = 1
2(1 + cos(2θ))

n Check if simple substitution will work

n If integrand is a rational expression, partial functions may work

n If integrand is polynomial x, trig, exp, ln function, integration by parts may work

n If integrand involves

√
b2x2 + a2

, trigonometric substitution may work

n If integrand has a quadratic in it, completing the square may work.



[1]: import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display, Math
from sympy import sqrt, diff, integrate, oo
from sympy import sin, cos, tan, ln, exp, erf, trigsimp, expand_trig, simplify
from sympy import sinh, cosh

[2]: %config Completer.use_jedi = False

x = sp.symbols('x')

[3]: y = x**2 + x + 1
int = integrate(y,x) # integrate y wrt x
display(int)

x3

3
+
x2

2
+ x

[4]: y = exp(-x**2)*erf(x)
int = integrate(y,x) # integrate y wrt x
display(int)

√
π erf2 (x)

4

[5]: y = exp(-x)
int = integrate(y, (x, 0, oo)) # definite integral, limits 0 & infinity
display(int)

1

1



chapter 6

First Order Ordinary Differential

Equation

Differential equation is a mathematical statement containing one or more derivatives, i.e., terms

representing the rates of change of continuously varying quantities. Differential equations are

very common in fields of quantitative study such as science and engineering. Generally, the

solution of a differential equation is an equation expressing the functional dependence of one

variable upon one or more variables. It ordinarily contains constant terms that are not present

in the original differential equation. In other words, the solution of a differential equation

produces a function that can be used to predict the behaviour of the original system within

certain constraints.

6.1 Differential Equation

A differential equation (DE) is an equation involving an unknown function and its derivatives .

A DE is an ordinary differential equation (ODE) if the unknown function depends on only one

variable. If the unknown function depends on 2 or more independent variables , the DE is a

partial differential equation .

A DE along with subsidiary conditions on the unknown function and its derivatives, all given

at the same value of the independent variable, constitutes an initial-value problem . The

subsidiary conditions are initial conditions.

If the subsidiary conditions are given at more than one value of the independent variable, the

problem is a boundary-value problem and the conditions are the boundary conditions .

6.2 Standard & Differential forms of an ODE

The Standard form for first order DE is:

dy

dx
= f(x,y)

and the differential form is:

M(x,y)dx+N(x,y)dy = 0

6.3 Order & Degree of a Differential Equation

The order of a differential equation is the order of the highest derivative which is also known

as the differential coefficient. E.g.,

d3x

dx
+ 3xdy

dx
= ey

the order of the above differential equation is 3. A first order differential equation is of the form:

23



24 chapter 6. f irst order ordinary differential equation

dy

dx
+Py =Q (6.3.1)

where P & Q are constants or functions of independent variables. E.g.,

dy

dx
+ (x2 + 5)y = x

5

The degree of thedifferential equation is representedby the power of the highest order derivative

in the given differential equation.[
d2y

dx2 +
(
dy

dx

)2]4

= k2
(
d3y

dx3

)2

the degree of the above differential equation is 2.

For the equation:

tan

(
dy

dx

)
= x+ y the degree is undefined.

6.4 Solving ODE- Method of Separation of Variables

Through algebraic manipulations, some ODEs can be reduced to:

g(y)dy
dx

= f(x) (6.4.1)

By integrating both sides:∫
g(y)dy =

∫
f(x)dx+ c

Example:

dy

dx
= 1 + y2 =⇒ dy

1 + y2 = dx

Let y = tanθ =⇒ dy

dθ
= sec2 θ =⇒ sec2 θ

1 + tan2 θ
dθ = dx =⇒ x= θ+ c =⇒ x= tan−1 y+ c

6.5 Solving ODE - Reduction to Separable Form

Consider the ODE of the form:

dy

dx
= f

(
y

x

)
(6.5.1)

Let y = ux

dy

dx
= x

du

dx
+u

f(u) = x
du

dx
+u

du

f(u)−u = dx

x∫
du

f(u)−u =
∫
dx

x
+ c

∫
du

f(u)−u = ln |x|+ c (6.5.2)
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6.6 Solving ODE - Exact ODE & Integrating Factor

If an ODE has an implicit solution :

u(x,y) = c= constant

then,

du= ∂u

∂x
dx+ ∂u

∂y
dy = 0

M(x,y)dx+N(x,y)dy = 0

M = ∂u

∂x

N = ∂u

∂y

A 1st order ODE is an exact DE if:

∂M

∂y
= ∂N

∂x
= ∂2u

∂x∂y

u=
∫
Mdx+ k(y) =

∫
Ndx+ l(x)

Example:

cos(x+ y)dx+ (3y2 + 2y+ cos(x+ y))dy = 0

M = ∂u

∂x
= cos(x+ y)

u= sin(x+ y) + k(y) =⇒ ∂u

∂y
= cos(x+ y) + dk

dy

N = ∂u

∂y
= 3y2 + 2y+ cos(x+ y) = cos(x+ y) + dk

dy

k = y3 + y2 + c∗

u= sin(x+ y) + y3 + y2 + c

6.7 Inexact ODE

Consider the ODE:

− ydx+xdy = 0

Here the above approach will not work, because:

M = ∂u

∂x
=−y N = ∂u

∂y
= x

∂M

∂y
= ∂2M

∂x∂y
=−1 ∂N

∂x
= ∂2N

∂x∂y
= 1 ∂2M

∂x∂y
,
∂2N

∂x∂y
(inexact)

u=−y
∫
dx+ k(y) =−xy+ k(y)

∂u

∂y
=−x+ dk

dy

But N = ∂u

∂y
= xwhich contradicts the above equation
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6.8 Integrating Factor to transform to an exact ODE

Multiply the equation by a factor F (x,y) to make it exact.

FMdx+FNdy = 0

and impose the conditions:

∂

∂y
(FM) = ∂

∂x
(FN)→ FyM +FMy = FxN +FNx

Let F depend only on x,

FMy = F
′
N +FNx

My

N
= F

′

F
+ Nx
N∫

df

F
dx=

∫ 1
N

(
∂M

∂y
− ∂N
∂x

)
dx

Let R= 1
N

(
∂M

∂y
− ∂N
∂x

)

ln(F ) =
∫
Rdx =⇒ F (x) = e

∫
R(x)dx

Similarly,

R∗ = 1
M

(
∂N

∂x
− ∂M

∂y

)
=⇒ F (y) = e

∫
R∗(y)dy

E.g., solve:

(ex+y + yey)dx+ (xey − 1)dy = 0

M = ∂u

∂x
= ex+y + yey N = ∂u

∂y
= xey − 1

∂M

∂y
= ex+y + yey + ey

∂N

∂x
= ey

∂M

∂y
− ∂N
∂x

= ex+y + yey

R= 1
N

(
∂M

∂y
− ∂N
∂x

)
= 1
xey − 1

(
ex+y + yey

)
R does not work as it is a function of both x and y. So we try with R∗

R∗ = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1
ex+y + yey

(
ex+y + yey

)
=−1

e
∫
R∗dy = e−y this works as it is a function y only

Multiplying the ODE by eR
∗ = e−y

(ex + y)dx+ (x− e−y)dy = 0
∂M

∂y
= ∂N

∂x
= ∂2u

∂x∂y
= 1 (exact ODE!)

M = ∂u

∂x
= ex + y =⇒ u= ex +xy+ k(y) =⇒ ∂u

∂y
= x+ dk

dy
= x− e−y =⇒ k = ey + c∗

u= ex +xy+ ey + c

6.9 1st Order Linear ODE - Homogeneous

A first order ODE is linear if it is of the following form:
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dy

dx
+ p(x)y = r(x)

and is non-linear if it cannot be brought to the above form. The above ODE is linear in both y

and y
′
where p and q are any function of x. When r(x) = 0, the ODE is called homogeneous.

dy

dx
+ p(x)y = 0

By the method of separation of variables we have,∫
dy

y
=−

∫
p(x)dx =⇒ ln |y|=−

∫
p(x)dx+ c∗

y = ce−
∫
p(x)dx

(homogeneous solution yh)

6.10 1st Order ODE - Non Homogeneous

When r(x) , 0, the ODE is called non homogeneous . We multiply the ODE by a function F (x).

F y
′ +F p(x)y = F r(x)

Let F p(x) = F
′ =⇒ F

′

F
= p(x) =⇒ ln |F |=

∫
p(x)dx Let h=

∫
p(x)dx =⇒ F = eh

Now (F y)′ = F r(x) =⇒ (ehy)′ = r(x)eh =⇒ ehy =
∫
ehr(x)dx+ c

yp = e−h
∫
ehrdx+ c y = yh + yp = ce−h + e−h

∫
ehrdx+ c

6.11 Reduction to Linear Form - Bernoulli Equation

The Bernoulli equation, a non-linear ODE is given by:

y
′ + p(x)y = r(x)yn (6.11.1)

where n is any real number.

Let u= y1−n

u
′ = (1−n)y−ny′

u
′ = (1−n)y−n(ryn− py)

u
′ = (1−n)(r− py1−n)

u
′ = (1−n)(r− pu)

u
′ + (1−n)pu= (1−n)r (Linear ODE)



[1]: from sympy import Function, dsolve, Eq, diff, Derivative, sin, cos, symbols, pprint

[13]: x = Function('x')
t = symbols('t')
deq = Eq(diff(x(t),t), x(t)) # Eq(LHS, RHS)
display(deq)
xsoln = dsolve(deq, x(t)) # dsolve wrt x(t)
display(xsoln)

d

dt
x(t) = x(t)

x(t) = C1e
t

[6]: x = Function('x')
t = symbols('t')
deq = Eq(diff(x(t),t), (x(t) - 900) / 2)
display(deq)
xsoln = dsolve(deq, x(t))
display(xsoln)

d

dt
x(t) =

x(t)

2
− 450

x(t) = C1e
t
2 + 900

[5]: y = Function('y')
x = symbols('x')
deq = Eq(diff(y(x),x), (1 + y(x)**2))
display(deq)
xsoln = dsolve(deq, y(x))
display(xsoln)

d

dx
y(x) = y2(x) + 1

y(x) = − tan (C1 − x)

1



chapter 7

Second Order Ordinary

Differential Equation

Second order differential equations have a variety of applications in science and engineering

such as vibrations and electric circuits. There are a host of multi dimensional engineeringmodels

that incorporate second order differential equations including wave motion, flow mechanics,

Maxwell’s electro-magnetic equations and Schroedinger equation in Nuclear Physics.

7.1 Power Series

7.1.1 Power Series, Taylor Series & Maclaurin Series

Consider the following function that is represented as a power series.

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + . . .+ cn(x− a)n

f(a) = c0

f
′(a) = c1

f
′′(a) = 2c2→ c2 = 1

2f
′′(a)

f
′′′(a) = 3× 2c3→ c3 = 1

3!f
′′′(a)

...

fn(a) = n(n− 1)(n− 2)...1→ cn = 1
n!f

n(a)

If fn(x) exists at x= a, the Taylor series for f(x) at a is given by:

∞∑
n=0

fn(a)
n! (x− a) = f(a) + f

′(a)(x− a) + f
′′(a)
2! (x− a)2 + . . .+ fn(a)

n! (x− a)n + . . .

(7.1.1)

A Maclaurin series is a Taylor series expansion about 0.

f(x) = f(0) + f
′(0)x+ f

′′(0)
2! x2 + . . .

fn(0)
n! xn + . . . (7.1.2)

The series solution may or may not converge at x= xp. To converge, for any ε, there is exists an
N that satisfies:

|Rn(xp)|= |s(xp)− sn(xp)|< ε ∀n >N (for all n >N)

where sn(x) is the nth partial sum:

29



30 chapter 7. second order ordinary differential equation

sn(x) = a0 + aa(x−x0) + ·+ an(x− a0)n

and Rn(xp) is the remainder.

Rn(x) = an+1(x−x0)n+1 + an+2(x−x0)n+2 + . . .

The convergence interval is |x−x0|<R (radius of convergence). This means that in the case

of convergence, we can approximate the sum s(x1) by sn(x1) as accurately as we want by taking

a large enough n. f(x) is called analytic at a point x= x0 if it can be represented by a power

series in powers of x−x0 with a positive radius of convergenceR. This means that a real analytic

function has to be an infinitely differentiable function.

7.2 2nd Order Linear ODE

The standard form of a 2nd Order ODE is:

y
′′ + p(x)y′ + q(x)y = r(x) It is linear in y, y′ and y′′ (7.2.1)

If r(x) = 0, the ODE is homogeneous, else it is non-homogeneous. When the coefficients a and b
are constant:

y
′′ + ay

′ + by = 0 (7.2.2)

Choose eλx as a solution and substitute in the homogeneous ODE.

(λ2 + aλ+ b)eλx = 0 =⇒ λ2 + aλ+ b= 0 =⇒ λ= 1
2
(
−a±

√
a2− 4b

)
yh = c1e

λ1x + c2e
λ2x

(general solution to the homogeneous ODE)

y1, corresponding to λ1, and y2, corresponding to λ2, are linearly independent and are

called basis of solutions. The superposition principle also called the linearity principle, i.e.,

thehomogeneous solution is a combinationof y1 and y2 is true only for linear homogeneous ODE.

The arbitrary constants c1 and c2 are determined from the initial conditions:

y(x0) = k0 y
′(x0) = k1

A particular solution is obtained if we assign specific values to c1 and c2.

7.3 Lagrange’s Method of Reduction of Order

Consider a linear homogeneous 1st Order ODE in its standard form :

y
′′ + p(x)y′ + q(x)y = 0 (7.3.1)

If y1 is a basis solution , we can find y2 as follows:

Let y = y2 = uy1 =⇒ y
′
2 = u

′
y1 +uy

′
1 =⇒ y

′′
2 = u

′′
y1 + 2u′y′1 +uy

′′
1

Substituting, (u′′y1 + 2u′y′1 +uy
′′
1 ) + p(u′y1 +uy

′
1) + q(uy1) = 0

y1u
′′+ (2y′1 + py1)u′+ (y′′1 + py′1 + qy1)u= 0

u
′′ +u

′ 2y′1 + py1
y1

= 0
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Let U = u
′ =⇒ U

′ +U

(
2y′1
y1

+ p

)
= 0 =⇒ U ′

U
=−

(
2y′1
y1

+ p

)
∫
U ′

U
dx+

∫ (2y′1
y1

)
dx=−pdx =⇒ ln |U |+ 2ln |y1|=−

∫
pdx =⇒ ln |Uy2

1|=−
∫
pdx

Uy2
1 = e

∫
−pdx

U = 1
y2

1
e
∫
−pdx u=

∫
Udx y2 = y1

∫
Udx

y2 = y1

∫ 1
y2

1
e
∫
−pdxdx

7.4 Homogeneous Linear ODE with Constant Coeffi-

cients
Case 1: 2 Real Roots when a2− 4b > 0
Case 2: Double Root when a2− 4b= 0
Case 3: Complex Conjugate Roots when a2− 4b < 0

Case 1: 2 Real Roots when a2− 4b > 0. The general solution is given by:

y1 = eλ1x y2 = eλ2x

λ1 = 1
2
(
−a+

√
a2− 4b

)
λ2 = 1

2
(
−a−

√
a2− 4b

)
yh = c1e

λ1x + c2e
λ2x

(7.4.1)

Case 2: λ1 =−a2 , y1 = e−
ax
2 Determine y2 using the method of reduction of order.

y1 = e
−ax

2

y2 = y1

∫ 1
y2

1
e
∫
−pdxdx= e

−ax
2

∫ 1(
e
−ax

2
)2 e

∫
−adxdx= e−

ax
2

∫
eaxe−axdx= xe−

ax
2

yh = c1e
−ax/2 + c2xe

−a2x =⇒ yh = (c1 + c2x)e−ax/2

Case 3: λ=−a2 ± iw,w =
√
|a2− 4b|

y1 = eλ1x = e(−a2 +iw)x = e−
ax
2 eiwx y2 = eλ2x = e(−a2−iw)x = e−

ax
2 e−iwx

ex = 1 +x+ x2

2! + x3

3! + . . .+ xn

n! + . . .= cosx

eix = 1 + ix+ (ix)2

2! + (ix)3

3! + . . .= (1− x
2

2! + . . .) + i(x− x
3

3! + . . .) = sinx

=⇒ eiwx = coswx+ isinwx (de Moivre’s theorem) and eiπ =−1 (Euler’s Identity)

The general solution is given by, y = e−
ax
2 (c1coswx+ c2sinwx) c1, c2 are constants
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7.5 Euler-Cauchy Equations

The Euler-Cauchy equation is of the form:

x2y
′′ + axy

′ + by = 0 where a,b are constants (7.5.1)

Let y = xm =⇒ y
′ =mxm−1 =⇒ y

′′ =m(m− 1)xm−2

Substituting, x2m(m− 1)xm−2 + axmxm−1 + bxm = 0 =⇒ m2 + (a− 1)m+ b= 0

m= 1
2(1− a)±

√
1
4(a− 1)2− b

Case 1: Roots are distinct. The basis solutions are :

y1(x) = xm1 y2(x) = xm2
, the general solution is given by, y = c1x

m1 + c2x
m2

Case 2: Double roots.

b= 1
4(1− a)2 m= 1

2(1− a) y1 = x
1
2 (1−a)

y
′′ + a

x
y
′ + (1− a)2

4x2 y = 0

Use method of reduction of order, y2 = uy1 and with p= a

x

U = 1
y2

1
e
∫
−pdx u=

∫
Udx y2 = y1

∫
Udx y2 = y1

∫ 1
y2

1
e
∫
−pdxdx

∫
pdx=

∫
a

x
dx= alnx =⇒ e

∫
−pdx = e−alnx = elnx

−a = x−a = 1
xa

U = 1
y2

1

1
xa

= 1
x1−a

1
xa

= 1
x

=⇒ u=
∫
Udx=

∫ 1
x
dx= lnx

y2 = y1

∫
Udx= x

1
2 (1−a)lnx

yh = (c1 + c2lnx)x
1
2 (1−a) c1, c2 are constants

7.6 The Wronskian

Two solutions y1 and y2 are linearly dependent if their Wronkskian W is 0.

W (y1,y2) = y1y
′
2− y2y

′
1 = 0

Because if the solutions are dependent, y1 = ky2, where k is a constant

=⇒ W (y1,y2) = y1y
′
2− y2y

′
1 = ky2y

′
2− y2ky

′
2 = 0

The Wronksian is expressed as a Wronski Determinant:

W (y1,y2) =
∣∣∣∣∣y1 y2
y
′
1 y

′
2

∣∣∣∣∣ (7.6.1)

7.7 Non-homogeneous ODE

Consider the following non-homogeneous ODE:
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y
′′ + p(x)y′ + q(x)y = r(x)

The complete solution is the sum of homogeneous (yh) and particular (yp)solutions.

y(x) = yh(x) + yp(x) where yh = c1y1 + c2y2 (general solution)

yp is a solution of the non-homogeneous equation without any constants. A particular solution is

obtainedbyassigning specificvalues to the constants. The Method of Undetermined Coeffcients

is an approach to finding a particular solution to nonhomogeneous ODEs. If the term in r(x)
contains the following term, the choice for yp(x) is given by:

Term in r(x) Choice for yp(x)
keγx Ceγx

Kxn(n= 0,1, . . .) Knx
n +Kn−1xn−1 + . . .+K1x+K0

kcoswx or ksinwx Kcoswx+Msinwx

keαxcoswx or keαxsinwx eαx(Kcoswx+Msinwx)

7.8 Particular Solution by Variation of Parameters

(Lagrange)

The particular solution for the standard form ODE is derived as follows:

y′′+ p(x)y′+ q(x)y = r(x)

Find a pair of functions u1(x) and u2(x) such that:

yp(x) = u1(x)y1(x) +u2(x)y2(x) =⇒ y
′
p(x) = u

′
1y1 +u1y

′
1 +u

′
2y2 +u2y

′
2

Set constraint, u
′
1y1 +u

′
2y2 = 0

y
′
p(x) = u1y

′
1 +u2y

′
2

y
′′
p (x) = u

′
1y
′
1 +u1y

′′
1 +u

′
2y
′
2 +u2y

′′
2

Substituting,

(u′1y
′
1 +u1y

′′
1 +u

′
2y
′
2 +u2y

′′
2 ) + p(u1y

′
1 +u2y

′
2) + q(u1y1 +u2y2) = r

(y′′1 + py′1 + qy1)u1 + (y′′2 + py′2 + qy2)u2 + (u′1y′1 +u′2y
′
2) = r

Since y1 and y2 are solutions to the homogeneous ODE,

u′1y
′
1 +u′2y

′
2 = r

We now have the following simultaneous equations:

u
′
1y1 +u

′
2y2 = 0

u′1y
′
1 +u′2y

′
2 = r

Solving,

u
′
1 =− y2r

y1y
′
2− y

′
1y2

=−y2r

W

u
′
2 =− y1r

y1y
′
2− y

′
1y2

=−y1r

W

yp(x) =−y1

∫
y2r

W
dx+ y2

∫
y1r

W
dx



[148]: import sympy as sp
from sympy import sin, cos, tan, exp, E, I, simplify
from sympy.abc import x, y, z, t, w

[172]: fun = E**(x)
display(fun.series(x,n=10))

fun = E**(I*w*x)
display(fun.series(x,n=10))

fun = cos(w*x)
s1 = fun.series(x,n=10)
display(s1)

fun = I*sin(w*x)
s2 = fun.series(x,n=10)
display(s2)

display(s1+s2)

1 + x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+

x6

720
+

x7

5040
+

x8

40320
+

x9

362880
+O

(
x10

)

1 + iwx− w2x2

2
− iw3x3

6
+

w4x4

24
+

iw5x5

120
− w6x6

720
− iw7x7

5040
+

w8x8

40320
+

iw9x9

362880
+O

(
x10

)

1− w2x2

2
+

w4x4

24
− w6x6

720
+

w8x8

40320
+O

(
x10

)

iwx− iw3x3

6
+

iw5x5

120
− iw7x7

5040
+

iw9x9

362880
+O

(
x10

)

1 + iwx− w2x2

2
− iw3x3

6
+

w4x4

24
+

iw5x5

120
− w6x6

720
− iw7x7

5040
+

w8x8

40320
+

iw9x9

362880
+O

(
x10

)

1



chapter 8

Higher Order ODE

8.1 Higher Order Homogeneous ODE

The concepts of the 2nd Order ODE can be extended to higher order ODE which has the form:

y(n) + pn−1(x)y(n−1) + . . .+ p1(x)y′ + p0(x)y = r(x)

For constant coefficients, y = eλx yields λ(n) + an−1λ(n−1) + . . .+ a1λ+ a0 = 0 (characteristic

equation). For n distinct roots, there are n distinct basis solutions:

y = c1e
λ1x + c2e

λ2x + . . .+ cne
λnx

The Wronkskian is given by:

W (y1,y2, . . . ,yn) =

∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y
′
1 y

′
2 . . . y

′
n

. . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣= E

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ1 λ2 . . . λn
λ2

1 λ2
2 . . . λ2

n

. . . . . .

λn−1
1 λn−1

2 . . . λn−1
n

∣∣∣∣∣∣∣∣∣∣∣
WhereE = e(λ1+λ2+...+λn)x

. W = 0 if and only if the determinant, known as the Vandermonde

or Cauchy determinant, is zero. W , 0, if and only if, all the n roots are different.

If a real double root occurs, say, λ1 = λ2, then we take y1 and xy1 as corresponding linearly

independent solutions. If λ is a real root of orderm, then the corresponding basis solutions are:

eλx, xeλx, x2eλx, . . . , xm−1eλx

Complex roots occur in conjugate pairs λ= γ± iw since the coefficients of the ODE are real.

y1 = eγxcos wx y2 = eγxsin wx

If λ= γ+ iw is a complex double root, so is the conjugate λ= γ− iw and the corresponding

linearly independent solutions are:

eγxcoswx eγxsinwx xeγxcoswx xeγxsinwx

The first two of these result from eλx and eλ̄x as before, and the second two from xeλx and xeλ̄x

in the same fashion. The corresponding general solution is:

y = eγx[(A1 +A2x)coswx+ (B1 +B2x)sinwx]

For complex triple roots, which is quite rate, one would obtain two more solutions:

x2eγxcoswx x2eγxsinwx

35
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8.2 Higher Order Non-Homogeneous ODE

8.2.1 Method of Undetermined Coefficients

Apply the method of undetermined coefficients for solving 2nd orderODEwith amodification.

If a term in the choice for yp(x) is a solution of the homogeneous equation, then multiply

this term by xk, where k is the smallest positive integer and satisfies the condition that this

term ×xk is not a solution of the homogeneous equation. So, we try cxeλx, cx2eλx, . . . , cxkeλx

as a solution, plug into the ODE, and solve for c for the minimum k.

8.2.2 Method of Variation of Parameters

Extending the concept that we used for 2nd order ODE to arbitrary order nwe have:

yp(x) =
n∑
k=1

yk(x)
∫
Wk(x)
W (x) r(x)dx

8.3 Series Solutions of Homogeneous ODEs

Higher order linear ODEs with constant coefficients can be solved by algebraic methods as

their solutions are often elementary functions which are known from calculus. For ODEs

with variable coefficients the situation is complicated and their solutions are nonelementary

special functions , e.g., Legendre and Bessel functions.

8.3.1 Power Series Method

y =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3
3 + . . .

Compute y
′
,y
′′
, . . . ,y(n)

, substitute in the ODE and compute the coefficients of the powers of

x,x2,x3, . . . ,xn. Equate each of the coefficients to 0 to determine a0,a1,a2, . . . ,an.

8.4 Existence of Power Series Solutions

Consider the following ODE:

y′′+ p(x)y′+ q(x)y = r(x)

If p,q,r have Taylor series representations (analytic) then every solution of the ODE can be

represented by a power series in powers of x−x0 with a positive radius of convergence R. A
power series can be added, multiplied and differentiated term by term.

8.5 Classical Differential Equations

Legendre: (1−x2)y′′ − 2xy′ + k(k+ 1)y = 0

Chebyshev: (1−x2)y′′−xy′+ k2y = 0

Herimite: y′′− 2xy′+ 2ky = 0

Laguerre: xy′′+ (1−x)y′+ ky = 0

where k is a constant
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8.6 Legendre’s Equation

(1−x2)y′′ − 2xy′ + k(k+ 1)y = 0 k is a constant

Let y = an

∞∑
n=0

xn

Compute y,y
′
,y
′′
and substitute in the above equation.

y
′ = nan

∞∑
n=0

xn−1 y
′′ = n(n− 1)an

∞∑
n=0

xn−2

(1−x2)
∞∑
n=0

n(n− 1)anxn−2− 2x
∞∑
n=0

nanx
n−1 + k(k+ 1)

∞∑
n=0

anx
n = 0

Since n(n− 1) is 0 for n= 0 and n= 1, the lower indices start from 2 and 1.

∞∑
n=2

n(n− 1)anxn−2−
∞∑
n=2

n(n− 1)anxn− 2
∞∑
n=1

nanx
n + k(k+ 1)

∞∑
n=0

anx
n = 0

Let n− 2 =m and usem as the index in the remaining terms as it is a dummy index:

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m−

∞∑
m=2

m(m− 1)amxm− 2
∞∑
m=1

mamx
m + k(k+ 1)

∞∑
m=0

amx
m = 0

a0 and a1 are abitrary constants, the remaining constants are expressed in terms of these.

m= 0 =⇒ 2a2 + k(k+ 1)a0 = 0 =⇒ a2 =−−k(k+ 1)
2! a0

m= 1 =⇒ 6a3 + [−2 + k(k+ 1)]a1 = 0 =⇒ a3 =−(k− 1)(k+ 2)
3! a1

m≥ 2 =⇒ (m+ 2)(m+ 1)am+2 = [m(m− 1) + 2m− k(k+ 1)]am =(m2 +m− k2− k)am

am+2 =−(k−m)(k+m+ 1)
(m+ 1)(m+ 2) am

a4 = (k− 2)k(k+ 1)(k+ 3)
4! a0

a5 = (k− 3)(k− 1)(k+ 2)(k+ 4)
5! a1

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + . . .+ anx
n + . . .

y = a0y1(x) + a1y2(x) a0, a1 are arbitrary constants, y1 is the even series & y2 is the odd)

y1 = 1 + a2x
2 + a4x

4 + · · ·
y2 = x+ a3x

3 + a5x
5 + · · ·
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8.6.1 Legendre Polynomials

When:

m= k, am+2 = am+4 = am+6 · · ·= 0

If k is even, y1(x) reduces to a polynomial of degree k.
If k is odd, y2(x) reduces to a polynomial of degree k.

The reduction of power series to polynomials is a great advantage because thenwe have solutions

for all xwithout convergence restrictions. These polynomials, multiplied by some constants, are

called Legendre polynomials and are denoted by Pn(x).

The standard choice of such constants is to choose the coefficient an of the highest power xn as:

ak = (2k)!
2k(k!)2

We then calculate the other coefficients as follows:

am =− (m+ 1)(m+ 2)
(k−m)(k+m+ 1)am+2

Withm= k− 2

ak−2 =− k(k− 1)
2(2k− 1)ak

=− k(k− 1)
2(2k− 1)

2k!
2k(k!)2

=− k(k− 1)
2(2k− 1)

2k(2k− 1)(2k− 2)!
2kk(k− 1)!k(k− 1)(k− 2)!

= (2k− 2)!
2k(k− 1)!(k− 2)!

Withm= k− 4

ak−4 = (k− 2)(k− 3)
4(2k− 3) ak−2

= (k− 2)(k− 3)
4(2k− 3)

(2k− 2)!
2k(k− 1)!(k− 2)!

= (2k− 4)!
2k2!(k− 2)!(k− 4)!

In general,

ak−2m = (−1)m (2k− 2m)!
2km!(k−m)!(k− 2m)!
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8.7 Frobenius Method

Several important 2nd order ODEs have coefficients that are not analytic. Yet these ODEs can be

solved through an extension of the power series method that is credited to Frobenius. Consider

the ODE:

y
′′ + b(x)

x
y
′ + c(x)

x2 y = 0 Note: b(x), c(x) are analytic at x= 0

This ODE has at least one solution of the form:

y(x) = xr
∞∑
m=0

amx
m

Where r is real or complex and a0 , 0.

Multiply the ODE by x2
and expand b(x) and c(x) in Taylor series.

x2y
′′ +xb(x)y′ + c(x)y = 0

b(x) =
∞∑
m=0

bmx
m c(x) =

∞∑
m=0

cmx
m

y(x) = xr
∞∑
m=0

amx
m y′(x) =

∞∑
m=0

(m+ r)amxm+r−1 y′′(x) =
∞∑
m=0

(m+ r)(m+ r− 1)amxm+r−2

Substituting in the ODE,

xr[r(r− 1)a0 + · · · ] + (b0 + b1x+ · · ·)xr(ra0 + · · ·) + (c0 + c1x+ · · ·)xr(a0 + a1x+ · · ·) = 0

Equate coefficients of xr,xr+1,xr+2
to 0.

[r(r− 1) + b0r+ c0]a0 = 0

[r2 + (b0− 1)r+ c0] = 0 (indicial equation)

The Frobenius method yields a basis of solutions.

Distinct roots not differing by an integer

y1(x) = xr1(a0 + a1x+ a2x
2 + . . .)

y2(x) = xr2(A0 +A1x+A2x
2 + . . .)

Double root r1 = r2 = r = 1
2(1− b0)

y1(x) = xr1(a0 + a1x+ a2x
2 + . . .)

y2(x) = y1(x)lnx+xr1(A0 +A1x+A2x
2 + . . .)

Roots differing by an integer

y1(x) = xr1(a0 + a1x+ a2x
2 + . . .)

y2(x) = ky1(x)lnx+xr2(A0 +A1x+A2x
2 + . . .)

r1 > r2,k can be 0

For cases 2 and 3, the second independent solution can be obtained by reduction of order .
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8.8 Bessel’s Equation

x2y
′′ +xy

′ + (x2− ν2)y = 0 (ν is a real number ≥ 0)

Applying Frobenius technique, the solution is of the form

y(x) =
∞∑
m=0

amx
m+r

y′(x) =
∞∑
m=0

(m+ r)amxm+r−1 = xr−1[ra0 + (r+ 1)a1x+ (r+ 2)a2x2 + . . .]

y′′(x) =
∞∑
m=0

(m+ r)(m+ r− 1)amxm+r−2 = xr−2[r(r− 1)a0 + (r+ 1)ra1x+ (r+ 2)(r+ 1)a2x2 + . . .]

substituting in the ODE

∞∑
m=0

(m+ r)(m+ r− 1)amxm+r +
∞∑
m=0

(m+ r)amxm+r +
∞∑
m=0

amx
m+r+2− ν2

∞∑
m=0

amx
m+r = 0

r(r− 1)a0 + ra0− ν2a0 = 0 (m= 0)
(r+ ν)(r− ν) = 0, =⇒ r =±ν

(r+ 1)ra1 + (r+ 1)a1− ν2a1 = 0 (m= 1)
((ν+ 1)ν+ (ν+ 1)− ν2)a1 = 0 =⇒ (2ν+ 1)a1 = 0 =⇒ a1 = 0

(m+ r)(m+ r− 1)am + (m+ r)am + am−2− ν2am = 0 (m= 2,3, . . .)
(m+ ν)[(m+ ν− 1 + (m+ ν)− ν2]am + am−2 = 0 =⇒ m(m+ 2ν)am + am−2 = 0

since a1 = 0 =⇒ a3 = a5 = . . .= 0
2m(2m+ 2ν)a2m + a2m−2 = 0 (ensure even numbers only,m= 1,2, . . .)

a2m =− a2m−2
22m(m+ν) (m= 1,2, . . .)

a2 =− a0
22(ν+1)

a4 =− a2
222(ν+2) = a0

242!(ν+1)(ν+2)

When ν is an integer, denote it as by n

a2m =− (−1)na0
22mm!(n+1)(n+2)...(n+m) (m= 1,2, . . .)

choose, a0 = 1
2nn!

a2m = (−1)m

22m+nm!(n+m)! (m= 1,2, . . .)

A particular solution to Bessel’s equation is then given by,

Jn(x) = xn
∞∑
m=0

(−1)mx2m

22m+nm!(n+m)! (m= 1,2, . . ., and n≥ 0)

Jn(x) is called the Bessel function of the first kind of order n and converges ∀x.

For n= 0, J0(x) =
∞∑
m=0

(−1)mx2m

22mm!2 = 1− x2

22(1!)2 + x4

24(2!)2 + . . . (Bessel function of order 0, similar to cosine)

For n= 1, J1(x) =
∞∑
m=0

(−1)mx2m+1

22mm!(m+1)! = x
2 −

x3

231!2! + x5

252!3! + . . . (Bessel function of order 1, similar to sine)
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8.8.1 Bessel functions for real number

Choose a0 = 1
2νΓ (ν+1) where the Gamma function is defined as:

Γ (ν+ 1) =
∫ ∞

0
e−ttνdt (ν >−1)

Γ (ν+ 1) =−e−ttν
∣∣∣∣∞
0

+ ν
∫∞
0 e−ttν−1dt= 0 + νΓ (ν)

Γ (ν+ 1) = νΓ (ν) for n= 0,1, . . . Γ (n+ 1) = n! (The Gamma function is a generalised factorial)

a2m =− (−1)ma0
22mm!(ν+1)(ν+2)...(ν+m)2νΓ (ν+1)

a2m =− (−1)ma0
22m+νm!Γ (ν+m+1)

Jν(x) = xν
∞∑
m=0

(−1)mx2m

22m+νm!Γ (ν+m+ 1)!

Jν(x) is called the Bessel function of the first kind of order ν

Bessel functions satisfy many relationships such as the following:

[xνJν(x)]′ = xνJν−1(x) [x−νJν(x)]′ =−x−νJν+1(x)
Jν−1(x) +Jν+1(x) = 2ν

x Jν(x) Jν−1(x)− Jν+1(x) = 2J ′ν(x)
J1/2(x) =

√
2
πxsinx J−1/2(x) =

√
2
πxcosx

8.8.2 General Solution

For a general solution of Bessel’s equation in addition to Jν weneed a second linearly independent

solution. If ν is not an integer, the general solution can be obtained by replacing ν with −ν. The
general solution is then given by:

y(x) = c1Jν(x) + c2J−ν(x)

This cannot be the general solution for an integer ν = n because that will lead to linear

dependence.

8.8.3 Bessel functions of the second kind, Yν (x)

For n= 0, the Bessel function can be written as:

xy
′′ + y

′ +xy = 0

The indical equation has a double root and the desired solution must be of the form:

y2(x) = J0lnx+
∞∑
m=1

Amx
m

y
′
2 = J

′
0lnx+ J0

x
+
∞∑
m=1

mAmx
m−1

y
′′
2 = J

′′
0 lnx+ 2J ′0

x
− J0
x2 +

∞∑
m=1

m(m− 1)Amxm−2

Substituting y
′′
2 ,y

′
2,y in the equation we have:
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(xJ ′′0 lnx+ 2J ′0−
�
��
J0
x

+
∞∑
m=1

m(m− 1)Amxm−1) + (J ′0lnx+
�
��
J0
x

+
∞∑
m=1

mAmx
m−1)+

(xJ0lnx+
∞∑
m=1

Amx
m+1) = 0

���
���

���:
0

(xJ ′′0 + J
′
0 +xJ0)lnx+ 2J ′0 +

∞∑
m=1

m(m− 1)Amxm−1 +
∞∑
m=1

mAmx
m−1 +

∞∑
m=1

Amx
m+1 = 0

2J ′0 +
∞∑
m=1

m2Amx
m−1 +

∞∑
m=1

Amx
m+1 = 0

Now, J0(x) =
∞∑
m=0

(−1)mx2m

22mm!2

J
′
0(x) =

∞∑
m=1

(−1)m2mx2m−1

22mm!2 =
∞∑
m=1

(−1)mx2m−1

22m−1m!(m− 1)!
∞∑
m=1

(−1)mx2m−1

22m−2m!(m− 1)! +
∞∑
m=1

m2Amx
m−1 +

∞∑
m=1

Amx
m+1 = 0

The power of x0 occurs only in the 2nd series, hence A1 = 0 .

Comparing coeffient of even powers of x in 2nd & 3rd series (1st series has none), we have:

(2s+ 1)2A2s+1 +A2s−1 = 0 (where s= 0,1,2, · · · )
Since A1 = 0 =⇒ A3 =A5 = · · ·= 0

− 1 + 4A2 = 0 =⇒ A2 = 1
4

Matching the odd power of x in all 3 series, we have:

(−1)s+1

22s(s+ 1)!s! + (2s+ 2)2A2s+2 +A2s = 0

A2m = (−1)m−1

22m(m!)2

(
1 + 1

2 + 1
3 + · · ·+ 1

m

)
(m= 0,1,2, · · · )

y2(x) = J0(x)lnx+ (−1)m−1hm
22m(m!)2 x2m

where hm =
(

1 + 1
2 + 1

3 + · · ·+ 1
m

)
J0,y2 are linearly independent functions (basis for x > 0), express y2 as particular solution:x

Y0(x) = a(y2 + bJ0) and choose a= π/2 and b= γ− ln2

Let, γ = lim
s→∞

(
1 + 1

2 + 1
3 + · · ·+ 1

s

)
− lns= 0.57721566490 (Euler constant)

The standard particular solution thus obtained is called the Bessel function of the second kind

of order zero or Neumann’s function of order zero and is denoted by Y0(x).

Y0(x) = 2
π

(
J0(x)lnx+ (−1)m−1hm

22m(m!)2 x2m + (γ− ln2)J0

)

Y0(x) = 2
π

[
J0(x)

(
ln
x

2 + γ

)
+ (−1)m−1hm

22m(m!)2 x2m
]
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8.8.4 Bessel functions of the second kind, Yn (x)

For n= 1,2, · · · a second solution can be obtained by manipulations similar to those for n= 0. It
turns out that in these cases the solution also contains a logarithmic term.

Depneding on whether ν is an integer or not, the standard second solution known as the

Bessel function of the 2nd kind of order ν or Neumann’s function of order ν is given by:

Yν(x) = 1
sinνπ

[Jν(x)cosνπ− J−ν(x)]

Yn(x) = lim
ν→n

Yν(x)

The general solution of Bessel’s equation ∀x ∧ x > 0 is given by:

y(x) = C1Jν(x) +C2Yν(x)
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Matrices

Matrices are a rectangular arrangement of numbers, expressions, symbols which are arranged

as rows and columns. The numbers represented in the matrix are called as entries. Matrices find

many applications in solving practical real life problems making it an indispensable concept.

Matrices have wide applications in engineering analysis and design, physics, economics,

and statistics. Matrices also have important applications in computer graphics for image

transformations. More recently, matrices have found wide use in the field of Machine Learning

(ML). Modern computers are equipped with specially designed hardware called a Graphics

Processing Unit or a GPU that is used for parallel processing of matrix operations for much

quicker results than ordinary sequential processing.

9.1 Definition of a Matrix

Amatrix of orderm×n, orm by nmatrix, is a rectangular array of numbers havingm rows and

n columns. It is represented as:

A=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am21 · · · amn


9.2 DEFINITIONS & OPERATIONS INVOLVING MATRICS

9.2.1 Equality

Two matrices A and B are equal, i.e., A=B, if and only if they are of the same size and their

corresponding entries are equal, i.e., aij = bij .

9.2.2 Addition (or subtraction):

If two matrices A and B have the same size, then A+B has the entries [aij ± bij ]. Example,

[
3 2
4 2

]
+
[
3 1
2 4

]
=
[
6 3
6 6

]

9.2.3 Scalar Multiplication

cA= [caij ] where c is a number. Example,

2×
[
3 2
4 2

]
=
[
6 4
8 4

]

45
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9.2.4 Matrix Multiplication

AB = C, the entries of C are given by:

cij =
n∑
k=1

aikbkj

If A is matrix of sizem×n, B is a matrix of size n× p, then the resulting matrix C from their

multiplication is of sizem× p. Example,

[
3 2
4 2

]
×
[
3 1
2 4

]
=
[
13 11
16 12

]

Matrix addition is commutative and associative. Matrix Multiplication is not commutative.

9.2.5 Transpose of a Matrix

The transpose of matrix aij is a matrix with its elements as aji. The rows of A become the

columns of AT , i.e., the entries of AT = [aji]. Example,

A=

3 2 1
4 5 6
3 2 1

 AT =

3 4 3
2 5 2
1 6 1



9.2.6 Principal Diagonal

If A is a square matrix, then the diagonal which contains all elements ajk for which j = k is

called the principal or main diagonal. Example: Principal Diagonal of A is [3 5 1].

9.2.7 Trace of a Matrix

The sum of elements of the principal diagonal of a matrix is called the trace of A.

9.3 Types of Matrices

9.3.1 Diagonal Matrix

A Diagonal matrix is a square matrix that has non-zero entries on its diagonal while all other

entries above and below the the diagonal are 0. Example,

A=

4 0 0
0 3 0
0 0 9



9.3.2 Zero or Null Matrix

A matrix whose elements are all equal to zero is called the null or zero matrix and is often

denoted by O or simply 0. Example,

A=
[
0 0
0 0

]
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9.3.3 Unit or Identity Matrix

All entries in the diagonal matrix are 1 and all other elements are 0. This implies AI = IA,
where I is the Identity Matrix. Example,

A=

1 0 0
0 1 0
0 0 1



9.3.4 Symmetric Matrix & Skew Symmetric Matrix

Symmetric matrices are square matrices whose transpose equals the matrix itself, i.e., AT =A.
Skew-symmetric matrices are square matrices whose transpose equals the negative of the matrix,

i.e., AT =−A. Example,

A=

1 2 3
2 4 5
3 5 3

 (Symmetric)

 1 2 3
−2 4 −5
−3 5 3

 (Skew Symmetric)

9.3.5 Orthogonal Matrix

A square matrix A is called an orthogonal matrix if its transpose is the same as its inverse, i.e.,

AT =A−1
or ATA= I . Example,

A=
[
0 1
1 0

]
AT =

[
0 1
1 0

]
A ·AT =

[
0 1
1 0

][
0 1
1 0

]
=
[
1 0
0 1

]
= I

9.3.6 Complex Conjugate of a Matrix

A complex conjugate is formed by changing the sign between two terms in a complex number. If

all elements ajk of a matrix A are replaced by their complex conjugates ājk, the matrix obtained

is called the complex conjugate of A and is denoted by Ā. Example,

A=
[
1 + 5i 3− 2i
2− 6i 4 + 4i

]
Ā=

[
1− 5i 3 + 2i
2 + 6i 4− 4i

]

9.3.7 Hermitian & Skew-Hermitian Matrices

A square matrix A, which is the same as the complex conjugate of its transpose, i.e. if A= ĀT , is
called Hermitianmatrix. If A=−ĀT , then A is called skew-Hermitianmatrix. If A is real, these

reduce to symmetric and skew-symmetric matrices respectively. Example,

A=
[

3 1− i
1 + i −2

]
Ā=

[
3 1 + i

1− i −2

]
ĀT =

[
3 1− i

1 + i −2

]
=A (Hermitian)

A=
[

3i 1 + i
−1 + i −i

]
Ā=

[
−3i 1− i
−1− i i

]
ĀT =

[
−3i −1− i
1− i i

]
=−A (Skew Hermitian)
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9.3.8 Unitary Matrix

A complex square matrix A is called a unitary matrix if its complex conjugate transpose is the

same as its inverse, i.e., ĀT =A−1
or ĀTA= I . Example,

A=
[ 1√

2
1√
2

1√
2 i −

1√
2 i

]
Ā=

[ 1√
2

1√
2

− 1√
2 i

1√
2 i

]
ĀT =

[ 1√
2 − 1√

2 i
1√
2

1√
2 i

]
A · ĀT =

[
1 0
0 1

]
=A (Unitary)

The real analogue of a unitary matrix is an orthogonal matrix, i.e., if all the entries of a unitary

matrix are real (i.e., their complex parts are all zero), then the matrix is orthogonal.

9.4 Linear System of Equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

The matrix form is: Ax= b

A=


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·

am1 am2 · · · amn

 x=


x1
x1
·
xm

 b=


b1
b1
·
bm


Augmented matrix is given by:

Ã=


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
· · · · · · ·

am1 am2 · · · amn bm


9.4.1 Gaussian Elimination

Consider a system of 3 equations:

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Eliminating x1 using the 2nd and 3rd equations:

a11x1+a12x2 + a13x3 = b1

a
′
22x2 + a

′
23x3 = b

′
2

a
′
32x2 + a

′
33x3 = b

′
3

Eliminating x2 using the 2nd and 3rd equations:

a11x1+a12x2+a13x3 = b1

a
′
22x2+a

′
23x3 = b

′
2

a
′′
33x3 = b

′′
3

We can then solve for x3, then x2 and then x1 from the 3rd, 2nd and 1st equations in that order.
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x3 = b
′′
3/a

′′
33

x2 = (b′2− a
′
23x3)/a′22

x1 = (b1− a12x2− a13x3)/a11

At the end of the Gauss elimination the form of the coefficient matrix and the augmented matrix

is called the row echelon form . For the above system of 3 equations, the augmented matrix is:

Ã=

a11 a12 a13 b1
0 a

′
22 a

′
23 b

′
2

0 0 a
′′
33 b

′′
3


9.4.2 Jacobi ’s Iterative Method

Consider the linear system of equations AX =B where,

A=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an21 · · · ann

 X =


x1
x2
...
xn

 B =


b1
b2
...
bn


Then the solution can be obtained iteratively from:

x
(k+1)
i = 1

aii

bi−∑
j,i

aijx
(k)
j

 i= 1,2, · · ·n, x(k)
& x(k+1)

are kth & (k+ 1)th iteration of x

9.4.3 Gauss - Seidel Method

The Guass-Seidel method is a modification of the Jacobi method that results in higher degree of

accuracy within fewer iterations. In Jacobi method the value of the variables is not modified

until next iteration. In Gauss-Seidel method the value of the variables are modified as soon

as new value is evaluated, i.e., in iteration (k+ 1), use previously computed value x
(k+1)
i if

available, otherwise use x
(k)
i .

9.5 Rank of a Matrix, Linear Independence

9.5.1 Rank

Rank of a matrix A, denoted as rank (A) , is the maximum number of linearly independent row

vectors of A. It is the number of non-zero rows in its row echelon form.

9.5.2 Existence & Uniqueness of Solutions in Linear Systems

A consistent system of equations has at least one solution. A linear system of n equations with

n unknowns has an unique solution. This holds true when the rank of coefficient matrix A, r, is
the same as rank of augmented matrix Ã. An inconsistent system has no solution. If r < n, then

the number of solutions is∞.

9.5.3 Null Space and Nullity

The null space of any matrix A consists of all the vectors B such that AB = 0 and B is not zero.

It can also be thought as the solution obtained from AB = 0 where A is a known matrix of

sizem×n and B is a matrix to be found of size n× k. The size of the null space of the matrix

provides us with the number of linear relations among attributes. AB = 0 implies every row

of Awhen multiplied by B goes to zero. This establishes the linear relationships between the
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variables. Every null space vector corresponds to one linear relationship. Nullity is number of

vectors in the null space of matrix A.

9.5.4 Rank Nullity Theorem
Rank of A + Nullity of A = Total number of columns of A

Example,

A=

1 2 0
2 4 0
3 6 1

 =⇒

1 2 0
0 0 0
3 6 1



The rank of the matrix Awhich is the number of non-zero rows in its echelon form is 2.

With AB = 0,1 2 0
2 4 0
3 6 1


b1b2
b3

= 0 =⇒ b1 + 2b2 = 0, b3 = 0 =⇒ B =

b1b2
b3

 =⇒ b1

 1
−1

2
0


Thus nullity, i.e., the dimension of the null space is 1. Thus, the sum of the rank and the nullity

of A is 2 + 1 = 3 which is equal to the number of columns of A.

9.6 Determinant

A determinant of order n is a scalar of an n×n (square) matrix A[ij] is given by:

D = det(A) =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣∣
D =

n∑
i=1

(−1)i+jaijMij (j = 1,2, · · · ,n) whereMij is a determinant of order n− 1

The determinantMij is obtained by removing the row and column in A corresponding to the

element aij . Mij is called the minor of aij . Cij , called the cofactor of aij , is defined as

(−1)i+jMij . Hence, D =
n∑
i=1

aijCij (j = 1,2, · · · ,n) where Cij is a determinant of order n− 1.

Adjoint of a matrix, written as adj(A), is defined as the transpose of the cofactor matrix of A.

Example,

det

∣∣∣∣∣∣∣
2 −3 1
2 0 −1
1 4 5

∣∣∣∣∣∣∣= 2det
∣∣∣∣∣0 −1
4 5

∣∣∣∣∣− (−3)det
∣∣∣∣∣2 −1
1 5

∣∣∣∣∣+ 1det
∣∣∣∣∣2 0
1 4

∣∣∣∣∣
= 2(0 + 4) + 3(10 + 1) + 1(8− 0) = 49

9.6.1 Properties of Determinants

1. The value of the determinant is unchanged if the rows and columns are interchanged.

2. Addition of a multiple of a row to another row does not alter the value of the determinant.
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3. A zero row or column renders the value of a determinant zero.

4. A determinant with two identical rows or columns has the value zero. Proportional rows

or columns render the value of a determinant zero.

5. Interchange of two rows multiplies the value of the determinant by −1.

6. Multiplication of a row by a non zero constant cmultiplies the value of the determinant

by c. det(cA) = cdet(A).

7. Am×nmatrix A has rank r ≥ 1 iff A has a r× r submatrix whose determinant , 0.

8. An n×n square matrix A has rank n iff detA , 0.

9. det(AB) = det(BA) = det(A)det(B)

9.6.2 Cramer’s Rule

a11x1 + a11x1 + . . .+ a1nxn = b1

a21x1 + a21x1 + . . .+ a2nxn = b2
...

an1x1 + an1x1 + . . .+ annxn = bn

x1 = D1
D
,x2 = D2

D
, · · · ,xn = Dn

D
(Cramer’s Rule)

where Dk is the determinant obtained by replacing the kth column by the entries b1, b2, · · · , bn.

The proof is simple:

Let A= [a1 a2 · · ·an]

where ai is a column vector.

Let Ii(X) =


1 0 · · · x1 0 · · · 0
0 1 0 x2 0 · · · 0
...

...
...

...
...

...
...

0 1 0 xn 0 · · · 1

= [e1 e2 · · · xi ei+1 en]

AIi(X) = [Ae1 Ae2 · · · Axi Aei+1 Aen]
= [a1 a2 · · · ai−1 b ai+1 · · · an] =Ai(b) (replace ith column of Awith b)

det(Ai(b)) = det(A)Ii(X) = det(A) det(Ii(X)) = det(A)xi

=⇒ xi = det(Ai(b))
det(A)

Example,

[
1 1
2 −3

][
x
y

]
=
[

5
−4

]

det

[
1 1
2 −3

]
=−5, x=−1

5det
[

5 1
−4 −3

]
= 11/5, y =−1

5det
[
1 5
2 −4

]
= 14/5
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9.7 Inverse of a Matrix

The inverse of a square matrix A, denoted by A−1
is a n×nmatrix that satisfies the following:

AA−1 =A−1A= I (I is an n×n unit matrix)
If A−1

exists,Ais called a non-singular matrix, else it is called a singular matrix. If the inverse

exists, it is always unique . A has an inverse iff rank A= r.

9.7.1 Inverse by Gauss Jordan method

To determine A−1
,

1. Create augmented matrix Ã= [A I] of size n× 2n.

2. Apply Gauss elimination to Ã to reduce to upper triangular form [UH].

3. Eliminate the entries of U above the diagonal and make the diagonal entries 1 to get to

arrive at the form [I K].

4. Then, A−1 =K

9.7.2 Inverse by Cofactors

A adj(A) =

∣∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
...

...
c1n c2n · · · cnn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
det(A) 0 · · · 0

0 det(A) · · · 0
...

...
...

...
an1 an2 · · · det(A)

∣∣∣∣∣∣∣∣∣∣
= det(A)I

=⇒A

[
adj(A)
det(A)

]
= I

=⇒ A−1 = adj(A)
det(A)

Example,

A=
[
3 2
1 4

]

det(A) = 10, cof(A) =
[

4 −1
−2 3

]
, adj(A) =

[
4 −2
−1 3

]
, A−1 = 1

10

[
4 −2
−1 3

]

9.7.3 Property of Matrix Inverse

(AB)−1 =B−1A−1
because (AB)(AB)−1 =ABB−1A−1 =AIA−1 =AA−1 = I or I = I

Generalizing, (ABC · · ·PQR)−1 =R−1Q−1P−1 · · ·C−1B−1A−1
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9.8 Eigenvalue &Eigenvector

Consider the following system of equations in matrix form.

AX = λX (where A is a n×nmatrix and λ is a scalar)

(A−λI)X = 0

The number, i.e., the scalar value λ is an eigenvalue of A

and X , a non zero vector, is called an eigenvector of A.

Geometrically, an eigenvector, corresponding to a real nonzero

eigenvalue, points in a direction in which it is stretched by

the transformation and the eigenvalue is the factor by which

it is stretched. If the eigenvalue is negative, the direction is

reversed. AT has the same eigenvalues as A.

Using Cramer’s rule:

det(A−λI) = 0

Solve forλ, substitute in equation, anddeterminex. det(λ) is called the characteristic determinant

and thepolynomial is called the characteristic polynomial. An×nmatrix as at least 1 eigenvalue,
at most n different eigenvalues.

9.8.1 Algebraic Multiplicity

The algebraic multiplicity of an eigenvalue, µ, is the number of times it appears, i.e., repeated,

as a root of the characteristic polynomial. Example,

A=
[
4 2
1 2

]
det(A−λI) =

[
4−λ 2

1 2−λ

]
= λ2− 6λ+ 6 = 0, λ1 = 3 +

√
3, λ1 = 3−

√
3

µ(λ1) = 1, µ(λ2) = 1

A=
[
1 0
2 1

]
det(A−λI) =

[
1−λ 0

2 1−λ

]
= (λ− 1)2 = 0, λ1 = 1, λ2 = 1

µ(λ1) = 2, µ(λ2) = 2

9.8.2 Geometric Multiplicity

Eigenspace is the collection of eigenvectors associated with each eigenvalue for the linear

transformation applied to the eigenvector. The geometric multiplicity of an eigenvalue is the

dimension of the linear space of its associated eigenvectors (i.e., its eigenspace). Example,

A=
[
2 0
1 1

]
det(A−λI) =

[
2−λ 0

1 1−λ

]
= (λ− 2)(λ− 1) = 0, λ1 = 2, λ2 = 1[

2−λ1 0
1 1−λ1

][
x11
x21

]
=
[
0
0

]
[
0 0
1 −1

][
x11
x21

]
=
[
0
0

]
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This yields x11 = x21 and is non-zero. Hence, the eigenspace of λ1 is the linear space that contains

all vectors of the formX2 = α

[
1
1

]
where α is any non-zero scalar. Thus, the eigenspace of λ1 is

generated by the single vector

[
1
1

]
and so has dimension 1 and the geometric multiplicity of λ1 is 1.

Note that the second set of equations, corresponding to λ2 = 1, yields x12 = x22 = 0 and hence

the vector X2 is not non-zero and is of no use.

Now consider,

A=
[
2 0
0 2

]
det(A−λI) =

[
2−λ 0

0 2−λ

]
= (λ− 2)(λ− 2) = 0, λ1 = 2, λ2 = 2[

2−λ1 0
1 2−λ1

][
x11
x21

]
=
[
0 0
0 0

][
x11
x21

]
=
[
0
0

]
This system of equations is satisfied for any value of x11 and x21.

Hence, the eigenspace of λ1 is the linear space that contains all vectors x1 are:

X1 = x11

[
1
0

]
+x21

[
0
1

]

where x11 and x21 are scalars that can be arbitrarily chosen. Thus, the eigenspace of λ1 is

generated by the two linearly independent vectors

[
0
0

]
,

[
0
1

]
. Hence, it has dimension 2. As a

consequence, the geometric multiplicity of λ1 is 2, equal to its algebraic multiplicity.

9.8.3 Defective eigenvalues

The algebraic and geometric multiplicity of an eigenvalue do not necessarily coincide. When

the geometric multiplicity of a repeated eigenvalue is strictly less than its algebraic multiplicity,

then that eigenvalue is said to be defective.

An eigenvalue that is not repeated has an associated eigenvector which is different from zero.

Therefore, the dimension of its eigenspace is equal to 1, its geometric multiplicity is equal to 1 and

equals its algebraic multiplicity. Thus, an eigenvalue that is not repeated is also non-defective.

9.8.4 Real Eigenvalues

Let A be a real symmetric matrix and let λ be a complex eigenvalue of A.

Ax= λx,x , 0
Taking complex conjugates of both sides, and since A is real we have,

Ax̄= λ̄x̄

Taking transpose and with A as symmetric we have,

x̄TA= λ̄x̄T

x̄TAx= λ̄x̄Tx

x̄Tλx= λ̄x̄Tx

λ= λ̄

The eigenvalues of a symmetric matrix are real. Similarly,we can establish that the eigenvalues of a

skew-symmetric matrix are pure imaginary or zero.
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9.8.5 Matrix Diagonalization

Two square matrices A and B are said to be similar if there exists an invertible P such that,

B = P−1AP

If twomatrices are similar, then they have the same rank, trace, determinant and eigenvalues.

Not only two similar matrices have the same eigenvalues, but their eigenvalues have the

same algebraic and geometric multiplicities. When A is diagonalizable, then there exists an

invertible matrix P such that,

D = P−1AP

where D is a diagonal matrix.

This is because multiplying the above with P we have,

AP = PD

Since D is diagonal, Pk is an eigenvector associated with Dkk. The matrix P used in the

diagonalization must be invertible. Therefore, its columns must be linearly independent. Stated

differently, there must be k linearly independent eigenvectors of A.

For some matrices, called defective matrices, it is not possible to find k linearly independent

eigenvectors. A matrix is defective when it has at least one repeated eigenvalue whose geometric

multiplicity is strictly less than its algebraicmultiplicity (called a defective eigenvalue). Therefore,

defective matrices cannot be diagonalized.

Matrix A is diagonalizable if and only if it does not have any defective eigenvalue. If all the eigen-

values of A are distinct, then A does not have any defective eigenvalue. Therefore, possessing

distinct eigenvalues is a sufficient condition for diagonalizability.

9.8.6 Positive Definite Matrix

A square matrix A is positive definite if pre-multiplying and post-multiplying it by the same

vector x always gives a positive number as a result, independently of how we choose the vector,

i.e., xTA x > 0. Positive definite symmetric matrices have the property that all their eigenvalues

are positive.

9.8.7 Quadratic Form & Positive Definiteness

A quadratic form in A is a transformation xTAx and is a scalar. When A is symmetric, we can

also write the transformation as xT (A2 + AT

2 )x. A is said to be positive definite iff xTAx > 0 for

any non-zero x. It is said to be semi positive definite iff xTAx≥ 0 for any non-zero x.

If A is positive definite, then it is full-rank. A matrix is said to have full rank if its rank equals

the largest possible for a matrix of the same dimensions, which is the lesser of the number of

rows and columns.
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Vector

Vectors were first used to express the laws of electromagnetism. Since that time, vectors have

become essential in physics, mechanics, electrical engineering, and other sciences to describe

forces mathematically.

Some quantities in physics are characterized by both magnitude and direction, such as displace-

ment, velocity, force and acceleration. To describe such quantities, we introduce the concept of a

vector as a directed line segment. There are other quantities in physics that are characterized

by magnitude only, such as mass, length and temperature. Such a quantity is called a scalars.

For example, speed, say 10 KM/Hr is a scalar whereas velocity, say 10 KM/Hr towards north-east

is a vector and is denoted as:

~v = 10 · 1√
2 î+ 10 · 1√

2 ĵ

where î is an unit vector along the x direction and ĵ is an unit vector along the y direction.

10.1 Vector Algebra

10.1.1 Vector Addition & Subtraction

Vector addtion (or subtraction) is performed by adding (or subtracting) their components.

~A + ~B = ~C

Ax +Bx = Cx
Ay +By = Cy

10.1.2 Scalar Multiplication

Multiplication of a vector
~A by a scalar m produces a vector m~A with magnitude m× ‖A‖

where ‖A‖ is the magnitude of
~A.

57
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10.1.3 Unit Vector

Unit vectors are vectors having unit length.

A=A1î+A2ĵ+A3k̂

‖A‖=
√
A2

1 +A2
2 +A2

3 = 1

10.1.4 Linear Independence & Dependence

Vectors
~A1, ~A2, · · · , ~An are linearly dependent if there exist scalars ~a1, ~a2, · · · , ~an, not all zero,

such that:

a1 ~A1 + a2 ~A2 + · · ·+ an ~An = 0

Otherwise, the vectors are linearly independent.

10.1.5 Scalar & Vector Fields

For each point (x,y,z) of a region D in space, if there corresponds a number (scalar) φ(x,y,z),
then φ is called a scalar function of position and we say that a scalar field f has been defined on

D. A scalar field φ, which is independent of time, is called a stationary or steady-state scalar

field.

For each point (x,y,z) of a region D in space, if there corresponds a vector V (x,y,z), then ~V is

called a vector function of position, and we say that a vector field
~V has been defined on D. A

vector field
~V which is independent of time is called a stationary or steady-state vector field.

10.1.6 Vector Space Rn

Let V = Rn where Rn consists of all n-element sequences u = (a1,a2, · · · ,an) of real numbers

called the components of u. The term vector is used for the elements of V and we denote them

using the letters u, v, and w, with or without a subscript. The real numbers arel scalars and we

denote them using letters other than u, v, or w.

We define two operations on V =Rn:

~u =


a1
a2
...
an

 ~v =


b1
b2
...
bn

 ~u +~v =


a1 + b1
a2 + b2

...
an + bn


where ai, bi are the components of vectors ~u and ~v and,

k~u =


ku1
ku2
...

kun


10.2 Vector Spaces

Vectorswithn real numbers as components are elements of real n dimensional vector space Rn.

Each vector in Rn is an ordered n-tuple of real numbers. Instead of real numbers, we can have

complex numbers to obtain the complex vector space.
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10.2.1 Dimension

For a non-empty set
~V of vectors where each vector has the same number of components. If, for

any two vectors ~a and
~b in

~V, all linear combinations αa+βb where α, β are real numbers, are

also elements of
~V.

The maximum number of linearly independent vectors in
~V is called the dimension of

~V
and is denoted as dim

~V. Hence, a vector space having vectors with n components has the

dimension n.

10.2.2 Basis

A linearly independent set in
~V consisting of a maximum possible number of vectors in

~V
is called the basis for

~V.

10.2.3 Span
Span (a vector space) is the set of all linear combinations of the vectors.

10.2.4 Subspace
Subspace of A is a non-empty subset of V including V itself.

10.3 Vector Products

10.3.1 Dot Product

The dot or scalar product of two vectors A and B, denoted by A ·B , is defined as the product of

the magnitudes of A and B and the cosine of the angle θ between them.

A·= |A||B|cosθ, 0≤ θ ≤ π (10.3.1)

10.3.2 Inner Product

An inner product is a generalization of the dot product. In a vector space, it is a way to multiply

vectors together, with the result of this multiplication being a scalar. an inner product < ů,ů>
satisfies the following four properties. Let u, v, and w be vectors and α be a scalar, then:

1. < u+ v,w >=< u,w >+< v,w >

2. < αv,w >= α < v,w >

3. < v,w >=<w,v >

4. < v,v >≥ 0 and equal if and only if v = 0.

10.3.3 Cross Product

The cross product of vectors
~A and

~B is a vector
~C = ~A× ~B (read as

~A cross ~B) defined as

follows.

~C = ~A× ~B = |A||B|sinθ û, 0≤ θ ≤ π
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The magnitude of
~C = ~A× ~B is equal to the product of the

magnitudes of
~A and

~B and the sine of the angle θ between

them. The direction of
~C is perpendicular to the plane of

~A
and

~B so that
~A,

~B, and
~C form a right-handed system. where

û is a unit vector indicating the direction of
~A× ~B.

The cross product of two vectors can be expressed in terms of determinant as follows:

~A× ~B =

∣∣∣∣∣∣∣
î ĵ k̂

A1 A2 A3
B1 B2 B3

∣∣∣∣∣∣∣=
∣∣∣∣∣A2 A3
B2 B3

∣∣∣∣∣ î−
∣∣∣∣∣A1 A3
B1 B3

∣∣∣∣∣ ĵ+
∣∣∣∣∣A1 A2
B1 B2

∣∣∣∣∣ k̂
10.3.4 Scalar Triple Product

The scalar triple product of three vectors
~A, ~B, ~C is defined as:

(~A ~B ~C) = ~A · (~B× ~C) =

∣∣∣∣∣∣∣
A1 A2 A3
B1 B2 B3
C1 C2 C3

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
A1 B1 C1
A2 B2 C2
A3 B3 C3

∣∣∣∣∣∣∣= det[~A ~B ~C]

Geometrically, the absolute value of

‖(~A ~B ~C)‖ is the volume of the paral-

lelepiped with
~A, ~B, ~C as edge vectors. The

three vectors inR3
are linearly independent

if and only if their scalar triple product is

not zero.

Properties of scalar triple product are as follows:

(~A ~B ~C) = ~A · (~B× ~C) = ~A · (~B× ~C) = (~A× ~B) · ~C
~A · (~B× ~C) = (~A× ~B) · ~C

10.3.5 Reciprocal Set

A reciprocal set a
′
satisfies the following:

a · a′ = 1

10.3.6 Vector Properties

Given three vectors
~A ,

~B and
~C; they satisfy the following properties:

1. Commutative:
~A + ~B = ~B + ~A

2. Associative: (~A + ~B) + ~C = ~A + (~B + ~C)
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3. Distributative:
~A · (~B + ~C) = ~A · ~B + ~A · ~C

4. Distributative:
~A× (~B + ~C) = (~A× ~B) + (~A× ~C)

5. Distributive: (~A + ~B)× ~C = (~A× ~C) + (~B× ~C)

6. Zero Vector:
~A + 0 = ~A

7. Scalar Multiplication bym: m(~A + ~B) =m~A +m~B

8. Inner Product: (~A, ~B) = ~A · ~B = ~A T ~B (n-Dimensional Euclidean Space)

9. Linear Transformation of Space Rn into Space Rm:

X =Rn,Y =Rm,Y =AX where A is anm×nmatrix.

10.3.7 Gram–Schmidt orthonormalization

The Gram–Schmidt orthonormalization process is a procedure for orthonormalizing a set of

vectors in an inner product space. Let {v1,v2, · · · ,vk} to be a non-orthonormal basis for V . Then,

we need to determine {u1,u2, · · · ,uk} an orthonormal basis for the span of {v1,v2, · · ·vp}. We

define the projection operator by:

proju(v) = < u,v >

< u,u >
u

where < u,v > denotes the inner product of the vectors u and v. This operator projects the

vector v orthogonally onto the line spanned by vector u. The Gram–Schmidt process is given by:

u1 = v1 e1 = u1
||u1||

u2 = v2− proju1(v2) e2 = u2
||u2||

u3 = v3− proju1(v3)− proju2(v3) e3 = u3
||u3||

...

uk = vk−
k−1∑
j=1

projuj (vk) ek = uk
||uk||

The sequence u1,u2, · · · ,uk is the required system of orthogonal vectors, and the normalized

vectors e1,e2, · · · ,ek form an orthonormal set. The calculation of the sequence u1,u2, · · · ,uk is
known as Gram–Schmidt orthogonalization, while the calculation of the sequence e1,e2, · · · ,ek
is known as Gram–Schmidt orthonormalization as the vectors are normalized.

10.4 Vector Differentiation

∆~R
∆~u =

~R(~u +∆~u)− ~R(~u)
∆~u

d~R
d~U

= lim
∆~u→0

∆~R
∆~u = lim

∆~u→0

~R(~u +∆~u)− ~R(~u)
∆~u

If, r(u) = x(u)̂i+ y(u)̂j+ z(u)k̂
dr

du
= dx

du
î+ dy

du
ĵ+ dz

du
k̂

10.5 Differential Geometry
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10.5.1 Frenet–Serret Formulae

Consider C to be a space curve defined by the function r(u). Then, dr/du is a vector in the

direction of the tangent to C. If the scalar u is taken as the arc length smeasured from some

fixed point on C, then dr/ds is a unit tangent vector to C and is denoted by T . The rate at which

T changes with respect to s is a measure of the curvature of C and is given by dT/ds. The

direction of dT/ds at any given point on C is normal to the curve at that point. If N is a unit

vector in this normal direction, it is called the principal normal to the curve. Then dT/ds= kN ,

where k is called the curvature of C at the specified point. The quantity ρ= 1/k is called the

radius of curvature .

A unit vector B perpendicular to the plane of T and N and such that B = T ×N , is called

the binormal to the curve. It follows that directions T,N,B form a localized right-handed

rectangular coordinate system at any specified point of C. This coordinate system is called the

trihedral or triad at the point. As s changes, the coordinate system moves and is known as the

moving trihedral. The Frenet–Serret formulae are given by:

dT

ds
= κN

dN

ds
= τB−κT dB

ds
= τN (10.5.1)

where τ is a scalar called the torsion. The quantity s= 1/τ is called the radius of torsion . The

osculating plane to a curve at a point P is the plane containing the tangent and principal normal

at P . The normal plane is the plane through P perpendicular to the tangent. The rectifying

plane is the plane through P , which is perpendicular to the principal normal.

10.5.2 Gradient

The differential operator del , written as∇ is defined as:

∇= ∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

if φ(x,y,z) be a scalar function defined and differentiable at each point (x,y,z) in a certain

region of space, then the gradient of φ, written∇φ or grad φ is defined as follows:

∇φ=
(
∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

)
φ= ∂φ

∂x
î+ ∂φ

∂y
ĵ+ ∂φ

∂z
k̂

10.5.3 Divergence

If V (x,y,z) = V1î+V2ĵ+V3k̂ is defined and differentiable at each point (x,y,z) in a region of

space, then the divergence of V, a scalar, is defined as follows:
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∇ ·V =
(
∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

)
· (Viî+Vj ĵ+Vkk̂) = ∂Vi

∂x
î+ ∂Vj

∂y
ĵ+ ∂Vk

∂z
k̂ (scalar)

10.5.4 Curl

The curl or rotation of V, a vector, is defined as:

curl V =∇×V =
(
∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

)
× (V1î+V2ĵ+V3k̂) =

∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

V1 V2 V3

∣∣∣∣∣∣∣
10.6 Vector Integration

10.6.1 Line Integration

Let A(x,y,z) =A1î+A2ĵ+A3k̂ be a vector function of position defined and continuous along

C. Then the integral of the tangential component of
~A along C from P1 to P2, written as:

∫ P2

P1

~A · ~dr =
∫
C

~A · ~dr =
∫
C

(A1dx+A2dy+A3dz)

If C is a closed curve (which we shall suppose is a simple closed curve, that is, a curve that does

not intersect itself anywhere), the integral around C is often denoted by:

∮
C

~A · ~dr =
∮
C

(A1dx+A2dy+A3dz)

10.6.2 Surface Integration

Consider a differential of surface area dS a vector dSwhosemagnitude is dS andwhose direction

is that of n̂. Then ~dS = n̂dS. The integral is given by:

"
S

~A · ~dS =
"

S

~A · n̂ dS

10.6.3 Volume Integration

Consider a closed surface in space enclosing a volume V . The volume integral is given by:

$
V

A dV

10.6.4 Gauss’ Divergence Theorem

Suppose V is the volume bounded by a closed surface S and
~F is a vector function of position

with continuous derivatives. Then:
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$
V

∇ · ~FdV =
$

V

(
∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

)
· (Fxî+Fy ĵ+Fzk̂) dV

=
$

V

∂Fx
∂x

dxdydz+
$

V

∂Fy
∂y

dxdydz+
$

V

∂Fz
∂z

dxdydz

Now,

$
V

∂Fz
∂z

dxdydz =
∫ x2

x1

∫ y2

y1
[Fz(x,y,z2)−Fz(x,y,z1)] dxdy =

∫
S1

∫
S2
Fz · ds

=⇒
$

V

∇ · ~FdV =
"

S

Fx · ds+
"

S

Fy · ds+
"

S

Fz · ds=
	

~F · dS

10.6.5 Stoke’s Theorem

The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed

surface. Suppose S is an open, two sided surface bounded by a closed, non intersecting curve C

(simple closed curve), and suppose
~F is a vector function of position with continuous derivatives.

Then,∮
C

~F · dl =
	

S

(∇× ~F) · ~ndS

curl ~F =∇× ~F =
(
∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂y
k̂

)
× (Fxî+Fy ĵ+Fzk̂) =

∣∣∣∣∣∣∣
î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣
=
∣∣∣∣∣ ∂∂y ∂

∂z

Fy Fz

∣∣∣∣∣ î−
∣∣∣∣∣ ∂∂x ∂

∂z
Fx Fz

∣∣∣∣∣ ĵ+
∣∣∣∣∣ ∂∂x ∂

∂y

Fx Fy

∣∣∣∣∣ k̂
=
(
∂Fz
∂y
− ∂Fy

∂z

)
î−
(
∂Fz
∂x
− ∂Fx

∂z

)
ĵ+
(
∂Fy
∂x
− ∂Fx

∂y

)
k̂

=
(
∂Fz
∂y
− ∂Fy

∂z

)
î+
(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+
(
∂Fy
∂x
− ∂Fx

∂y

)
k̂

	
S

(∇× ~F) · ~ndS =
	

S

[(
∂Fz
∂y
− ∂Fy

∂z

)
î+
(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+
(
∂Fy
∂x
− ∂Fx

∂y

)
k̂

]
· n̂dS

Using a parametric representation of the surface we have,

r(u,v) = [x(u,v),y(u,v),z(u,v)] = x(u,v)î + y(u,v)̂j+ z(u,v)k̂

Normal Vector,
~N = ~ru× ~rv, Unit Normal Vecrtor n̂ = 1

‖N‖
~N

‖~ru×~rv‖= ‖N‖ (area of the parallelogram with sides ~ru and ~rv)

=⇒ ~ndS = n̂‖N‖ ~du · ~dv = ~N ~du · ~dv

=⇒
	

S

(∇× ~F) · ~ndS =
	

S

[(
∂Fz
∂y
− ∂Fy

∂z

)
î+
(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+
(
∂Fy
∂x
− ∂Fx

∂y

)
k̂

]
· ~Ndudv

Setting, u= x, v = y, r(u,v) = r(x,y) = xî+ yĵ+ f k̂

N = |ru× rv|= |rx× ry|=

∣∣∣∣∣∣∣
î ĵ k̂

1 0 fx
0 1 fy

∣∣∣∣∣∣∣=−fxî− fy ĵ+ k̂where fx = ∂r(x,y))
∂x

and fy = ∂r(x,y))
∂y	

S

[(
∂Fz
∂y
− ∂Fy

∂z

)
î+
(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ+
(
∂Fy
∂x
− ∂Fx

∂y

)
k̂

]
· [−fxî− fy ĵ+ k̂]dxdy
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=
	

S

[(
∂Fz
∂y
− ∂Fy

∂z

)
(−fx) +

(
∂Fx
∂z
− ∂Fz

∂x

)
(−fy) +

(
∂Fy
∂x
− ∂Fx

∂y

)]
dxdy

From Chain Rule, − ∂

∂y
Fx(x,y,f(x,y)) =− ∂

∂y
Fx(x,y,z)− ∂

∂z
Fx(x,y,z) ∂

∂y
f(x,y)

=⇒
	

S

[(
−∂Fx
∂y
− ∂Fx

∂z
fy

)]
dxdy =

	
S

− ∂

∂y
Fx(x,y,f(x,y))dxdy =

∮
C
Fxdx

Similarly use, y = g(x,z), z = h(x,y) to arrive at

∮
C
Fydy,

∮
C
Fzdz

=⇒
	

S

(∇× ~F) · ~ndS =
∮
C

~F · dl =
∮
C
Fx dx+

∮
C
Fy dy+

∮
C
Fz dz

10.6.6 Green’s Theorem

Suppose R is a closed region in the xy plane bounded by a simple closed curve C, and suppose

M and N are continuous functions of x and y having continuous derivatives in R. Then,

	
R

(
∂M

∂x
− ∂N
∂y

)
dxdy =

∮
C

(Mdx+Ndy)

This can be proven from the following:	
R

∂N

∂y
dxdy =

∫ b

a

∫ g2(x)

g1(x)

∂N

∂y
dydx

=
∫ b

a
N(x,g2(x))dx−

∫ a

b
N(x,g1(x))dx

=−
∫
C3
N(x,g2(x))dx−

∫
C1
N(x,g1(x))dx∫

C2
N(x,y)dx=

∫
C4
N(x,y)dx= 0

Similarly,

∫
C
M(x,y)dy =

∫
C2
M(y,h1(y))dy+

∫
C4
M(x,h2(y))dy

where C is traversed in the positive (counter clockwise) direction. Green’s theorem is a planar

case of Stoke’s theorem.
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System of ODE

A system of ordinary differential equations (ODEs) is a set of differential equations that involve

multiple dependent variables, each of which is a function of the same independent variable. In

other words, it is a set of equations that describes how the rates of change of several variables

depend on their current values and possibly the values of other variables.

Systems of ODEs are used to model a wide range of physical, biological, and engineering

systems, such as chemical reactions, population dynamics, control systems, and many others.

Solving or analyzing systems of ODEs is often challenging and requires a combination of

analytical and numerical methods, such as numerical integration, linear algebra, and phase

plane analysis.

11.1 System of ODE

Consider the following genearal system of ODE:

dy1
dt

= f1(t,y1,y2, · · ·yn)

dy2
dt

= f2(t,y1,y2, · · ·yn)
...

dyn
dt

= fn(t,y1,y2, · · ·yn)

Now consider the following linar system of ODE:

y
′
1 = a11(t)y1 + · · ·+ a1n(t)yn + g1(t)
...

y
′
n = an1(t)y1 + · · ·+ ann(t)yn + gn(t)

In a vector form,

y
′ =Ay+ g

If g = 0, the system is homogeneous and we have:

y
′ =Ay

Consider the solution:

y = xeλt

y
′ = λxeλt =Ay =Axeλt

We arrive at the Eigengvalue problem:

Ax= λx
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11.2 Qualitative Analysis, Critical Point & Stability

y′1 = a11y1 + a12y2
y′2 = a21y1 + a22y2

dy2
dy1

= a21y1+a22y2
a11y1+a12y2

A single ODE has a solution of the form y = ceλt

y′ = xλeλt

In vector form Ax= λx determine the eigenvalues and the eigenvector

det(A−λI) =
∣∣∣∣∣a11−λ a12
a21 a22−λ

∣∣∣∣∣= 0

The general solution is given by:

y = c1eλ1x + c2eλ2x

For a qualitative analysis of a system of ODE, we use phase portrait which is a graphical

representation of the behavior of a dynamical system over time. In particular, it shows the

possible trajectories that a system can take in its phase space, which is a space of all possible

states of the system. It is desirable that physical systems be stable, i.e., a small change at some

instant causes only a small change in the behavior of the system at later times.

In a phase portrait, the state of the system is represented by a point, and the arrows indicate the

direction of motion of the system at each point in the phase space. The trajectory of the system

over time can be traced by following the arrows in the phase portrait.

Phase portraits are commonly used in physics, engineering, and other sciences to study the

behavior of systems that change over time, such as oscillating springs, pendulums, and chemical

reactions. They can also be used to analyze more complex systems, such as biological networks

and economic models.

11.3 Qualitative Analysis, Critical Point & Stability

t starts with 0 and→∞

Eigenvalue λ1,λ2 Critical Point type Stability as t→∞

real, distinct, -ve Node Stable

real, distinct, +ve Node Unstable

real, equal, -ve Node Stable

real, equal, +ve Node Unstable

real, distinct, opposite sign Saddle Unstable

complex with -ve real part Spiral sink Stable

complex with +ve real part Spiral source Unstable

complex with real part = 0 Center Stable, not asymptotically
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An equilibrium point is stable if for some initial value close to the equilibrium point, the solution

will eventually stay close to the equilibrium point. An equilibrium point is asymptotically

stable if for some initial value close to the equilibrium point, the solution will converge to the

equilibrium point.
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Laplace Transform

Laplace transform is a particular integral transform invented by the French mathematician

Pierre-Simon Laplace and subsequently developed by British physicist Oliver Heaviside to

simplify the solution of differential equations that describe physical processes. As an example.

it is widely used by electrical engineers to solve circuit problems. With Laplace transforms the

process of solving an ODE is simplified to an algebraic problem.

12.1 Definition

The Laplace transform is an integral transform defined as:

F (s) = L{f}=
∫ ∞

0
e−stf(t)dt where k(s, t) is the kernel function e−st

The inverse transform L−1{F}will yield f(t).

12.2 Basic Transforms

L{eat}=
∫ ∞

0
e−steatdt=

∫ ∞
0

e−(s−a)tdt= 1
−(s− a)e

−(s−a)t
∣∣∣∣∞
0

= 0− 1
−(s− a)

=⇒ L{eat}= 1
s− a

where s− a > 0

The Laplace transform of trigonometric functions are as follows:

L(cos wt) =
∫ ∞

0
e−stcos wt dt= e−st

−s
cos wt

∣∣∣∣∞
0
− w
s

∫ ∞
0

e−stsin wt dt= 1
s
− w
s
L{sin wt}

L{sin wt}=
∫ ∞

0
e−stsin wt dt= e−st

−s
sin wt

∣∣∣∣∞
0

+ w

s

∫ ∞
0

e−stcos wt dt= w

s
L{cos wt}

Solving the simulatneous equations we get,

L{cos wt}= s

s2 +w2 L{sin wt}= w

s2 +w2

The hyperbolic functions are given by:

coshwt=1
2(ewt + e−wt)

sinhwt=1
2(ewt− e−wt)

The Laplace transform of hyperbolic functions are:
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L{cosh wt}= 1
2L{e

wt}+ 1
2L{e

−wt}= 1
2

( 1
s−w

+ 1
s+w

)
= s

s2−w2

L{sinh wt}= 1
2L{e

wt}− 1
2L{e

−wt}= 1
2

( 1
s−w

− 1
s+w

)
= a

s2−w2

L{cosh wt}= s

s2−w2 L{sinh wt}= w

s2−w2

The Laplace transform of a polynomial is computed below.

L{tn+1}=
∫ ∞

0
e−sttn+1dt=−1

s
e−sttn+1

∣∣∣∣∞
0

+ n+ 1
s

∫ ∞
0

e−sttndt

=⇒ L{tn+1}= n+ 1
s

L{tn} for s > 0

L{tn}= n

s
L{tn−1}

=⇒ L{tn+1}= (n+ 1)!
sn+2 (by induction, where n= 0,1, · · · )

Now consider a to be real positive. Laplace transform of a polynomial can be expressed in terms

of the Gamma function.

L{ta}=
∫ ∞

0
e−sttadt

Let st= x,

L{ta}=
∫ ∞

0
e−x

(
x

s

)a dx
s

= 1
sa+1

∫ ∞
0

e−xxadx

Gamma function is defined as Γ (a) =
∫ ∞

0
e−xxa−1

=⇒ L{ta}= Γ (a+ 1)
sa+1

12.3 Linearity

Obviously, Laplace transform is a linear operation. i.e.,

L{af(t) + bg(t)}= aL{f(t)}+ bL{g(t)} where a and b are constants

12.4 s - Shifting

If Laplace transform of f(t) is given by F (a),we can get the Laplace transform eatf(t) as F (s−a).

F (s− a) =
∫ ∞

0
e−(s−a)f(t)dt=

∫ ∞
0

est[eatf(t)]dt= L{eatf(t)}

F (s− a) = L{eatf(t)}

12.5 Existance & Uniqueness

For Laplace transform L{f} to exist, the following condition must be satisfied:
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|f(t)| ≤Mekt whereM,k are constants

|L{f}|=
∣∣∣∣∫ ∞0 e−stf(t)dt

∣∣∣∣≤ ∫ ∞0 Mekte−stdt

M

∫ ∞
0

e−(s−k)tdt= M

−(s− k)e
−(s−k)t

∣∣∣∣∞
0

= 0 + M

s− k
= M

s− k
where s > k

|L{f}| ≤ M

s− k
where s > k

If the Laplace transform of a given function exists, it is uniquely determined. If two continuous

functions have the same transform, they are identical.

12.6 Laplace Transforms of Derivatives

L{f ′}=
∫ ∞

0
e−stf ′(t)dt= e−stf(t)

∣∣∣∣∞
0

+ s

∫ ∞
0

e−stf(t)dt

Since |f(t)| ≤Mekt, the upper limit of e−stf(t)
∣∣∣∣∞
0
is 0

=⇒ L{f ′}= sL{f}− f(0)

L{f ′′}= sL{f ′}− f ′(0) = s [sL{f}− f(0)]− f ′(0)

L{f ′′}= s2L{f}− sf(0)− f ′(0)

Similarily,

L{f (n)}= snL{f}− sn−1f(0)− sn−2f ′(0) · · · − fn−1(0)

12.7 Laplace Transforms of Integrals

Let g(t) =
∫ t

0
f(u)du

=⇒ g′(t) = f(t)
L{g′(t)}= L{f(t)}
sL{g(t)}− g(0) = L{f(t)}

Now g(0) =
∫ 0

0
f(u)du= 0

=⇒ L{g(t)}= 1
s
L{f(t)}

12.8 Laplace Transforms for solving ODEs

Consider the ODE,

y′′+ ay′+ by = r(t)

where y(0) =K0, y
′(0) =K1, and a,b are constants

[
s2Y − s(y(0))− y′(0)

]
+ a [sY − (y(0)] + bY =R(s)

where Y = L(y) and R= L(r)
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(s2 + as+ b)Y = (s+ a)y(0) + y′(0) +R(s)

The Transfer Function is defined as: Q(s) = 1
s2 + as+ b

= 1
(s+ 1

2a)2 + (b− 1
4a

2)

Y (s) =
[
(s+ a)y(0) + y′(0)

]
Q(s) +R(s)Q(s)

if y(0) = y′(0) = 0, Q(s) = Y

R
= L{output}

L{(input}

TheODE is transformed into analgebraic equationwhich is alsoknownas the subsidiary equation.
If the initial conditions are at some t0 and not at 0, set t= τ + t0. Solve the subsidiary equation.

Finally, compute the inverse transform to get the solution to the ODE. This technique can be

used to solve systems of ODEs .

12.9 Unit Step Function (Heaviside Function)

Unit Step Function or Heaviside Function is defined as:

u(t− a) =
{

0 for t < a

1 for t > a

L{u(t− a)}=
∫ ∞

0
e−stu(t− a)dt=

∫ ∞
a

e−stdt=−e
−st

s

∣∣∣∣∞
a

L{u(t− a)}= e−as

s

12.10 Time Shifting (t-Shifting)

Consider a function f(t) that has its Laplace transform F (s). The shifted function is given by:

f̃(t) = f(t− a)u(t− a) =
{

0 if t < a

f(t− a) if t > a

e−asF (s) = e−as
∫ ∞
a

e−sτf(τ)dτ =
∫ ∞
a

e−s(τ+a)f(τ)dτ

Let t= a+ τ

e−asF (s) =
∫ ∞
a

e−stf(t− a)dt

Introduce u(t− a) to change the lower limit

e−asF (s) =
∫ ∞

0
e−stf(t− a)u(t− a)dt

L{f̃(t)}=
∫ ∞

0
e−stf(t− a)u(t− a)dt= e−asF (s)

12.11 Dirac Delta Function

Consider the following function and the integral:
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fk(t− a) =
{ 1
k if a≤ t≤ a+ k

0 otherwise

Ik =
∫ ∞

0
fk(t− a)dt=

∫ a+k

a

1
k
dt= 1

We take the limit of fk as k→ 0 (k > 0), the Dirac Delta function, (δ− a), is then defined as:

δ(t− a) = lim
k→0

fk(t− a) δ(t− a) =
{
∞ if t= a

0 otherwise

=⇒
∫ ∞

0
δ(t− a)dt= 1

L{δ(t− a)}=
∫ ∞

0
e−stf(t)δ(t− a)dt=

∫ ∞
0

e−stf(a)δ(t− a)dt= f(a)e−as
∫ ∞

0
δ(t− a)dt

=⇒
∫ ∞

0
f(t)δ(t− a)dt= f(a) (Sifting)

The impulse function δ(t− a) sifts through the function f(t) and pulls out the value f(a)

L{δ(t− a)}= e−as

The use of the unit step function (Heaviside function) and the Dirac delta function make

the method particularly powerful for problems with inputs, i.e., driving forces, that have

discontinuities or represent short impulses or complicated periodic functions.

12.12 Convolution

Convolution of two functions f(t) and g(t) is defined by the following integral:

(f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ)dτ

L{(f ∗ g)(t)}=
∫ ∞

0
e−st

∫ t

0
f(τ)g(t− τ)dτ dt

=
∫ ∞

0
e−st

∫ ∞
0

f(τ)g(t− τ)u(t− τ)dτ dt

=
∫ ∞

0
e−stf(τ)dτ

∫ ∞
0

g(t− τ)u(t− τ)dt

L{(f ∗ g)(t)}= F (s)G(s)

The transform of a product is generally different from the product of the transforms of the

factors.

12.13 Differentiation of Transforms

F (s) =
∫ ∞

0
e−stf(t)dt

d

ds
F (s) =

∫ ∞
0

d

ds
e−stf(t)dt=

∫ ∞
0
−te−stf(t) =−

∫ ∞
0

e−sttf(t)

F ′(s) =−L(tf(t))
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12.14 Integration of Transforms

F (s) =
∫ ∞

0
e−stf(t)dt∫ ∞

s
F (s̃)ds̃=

∫ ∞
s

[∫ ∞
0

e−s̃tf(t)dt
]
ds̃=

∫ ∞
0

[∫ ∞
s

e−s̃tf(t)ds̃
]
dt=

∫ ∞
0

f(t)
[∫ ∞
s

e−s̃tds̃

]
dt∫ ∞

s
F (s̃)ds̃=

∫ ∞
0

e−st
f(t)
t∫ ∞

0
F (s)ds= L

(
f(t)
t

)
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Complex Analysis

Complex analysis is the study of complex numbers together with their derivatives, manipulation,

and other properties. Complex analysis is an extremely powerful tool with an unexpectedly

large number of practical applications to the solution of physical problems. It is helpful in many

areas such as hydrodynamics, thermodynamics, and particularly quantummechanics. Complex

analysis also has a wide range of applications in engineering fields such as nuclear, aerospace,

mechanical and electrical engineering.

13.1 Complex Number

Complex numbers are the numbers that are expressed in the form of x+ iy where, x,y are real
numbers and iis an imaginary number called “iota” defined as follows:

z = x+ iy i =
√
−1

Just as with real numbers, we can perform arithmetic operations on complex numbers. To add

or subtract complex numbers, we combine the real parts and combine the imaginary parts.

Addition, multiplication and division of complex numbers are given below.

z1 + z2 = (x1 +x2) + i(y1 + y2)
z1z2 = (x1x2− y1y2) + i(x1y2 +x2y1)
z1
z2

= x1 + iy1
x2 + iy2

= (x1 + iy1)(x2− iy2)
(x2 + iy2)(x2− iy2) = (x1x2 + y1y2)

x2
2 + y2

2
+ i

(x2y1−x1y2)
x2

2 + y2
2

13.1.1 Complex Conjugate

The complex conjugate of z is defined as:

z̄ = x− iy

13.1.2 Polar Representation

z = rcosθ+ irsinθ = reθ (Polar representation)

zn = rn(cosnθ+ sinnθ) ( De Moivre’s theorem)

|z|= r =
√
x2 + y2 =

√
zz̄

tanθ = y

x
( radians, counterclockwise). θ is argument of z

denoted by arg z , its Principal value is i≤ arg z ≤ i

XY-plane is complex plane, also known as the Argand diagram
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z1z2 = r1r2e
i(θ1+θ2) = r1r2 [cos(θ1 + θ1) + isin(θ1 + θ2)]

z1
z2

= r1
r2
ei(θ1−θ2) = r1

r2
[cos(θ1− θ1) + isin(θ1− θ2)]

arg (z1z2) = arg z1 + arg z2

arg

(
z1
z2

)
= arg z1− arg z2

13.1.3 Properties

z1z2 = z2z1 (commutative)

(z1z2)z3 = z1(z2z3) (associative)
z1(z2 + z3) = z1z2 + z1z3(distributive)

|z1z2|= |z1||z2| and
∣∣∣∣z1
z2

∣∣∣∣= |z1|
|z2|

13.1.4 Roots

z = reiθ

n
√
z = r

1
n ei(

θ
n

+ 2ki
n ) k = 1,2, · · ·

Example,

√
4i=

√
4e

i
2 = 2ei

i
4 ,2ei(

i
4 +i) =m

√
2(1 + i)

13.2 Point Set & Path

A Point Set is a collection of a finite or infinite points

in the complex plane. A set is open if every point in is

an interior point. A set is closed if it contains all of its

boundary points. A set S is called connected if any two

of its points can be joined by a chain of finitely many

straight-line segments all of whose points belong to S.

13.3 Complex Differentiation

Complex analysis is about complex functions that are differentiable in a domain. The concepts

of limits, derivatives, integrals are similar to those in calculus with real numbers. A function

f(z) of a complex variable z is called analytic in a domainD if it is defined and differentiable

at all points of D.

13.3.1 Cauchy Reimann Equations

A necessary condition that f(z) = u(x,y) + iv(x,y) be analytic in a region R is that u and v
satisfy the Cauchy-Riemann equations as stated below:

f ′(z) = lim
∆z→0

f(z+∆z)− f(z)
∆z

f ′(z) = lim
∆z→0

u(x+∆x,y+∆y) + iv(x+∆x,y+∆y)− [u(x,y) + iv(x,y)]
∆x+ i∆y

with ∆y = 0, f ′(z) = lim
∆x→0

u(x+∆x,y)−u(x,y)
∆x

+ iv(x+∆x,y)− iv(x,y)
∆x

= ux + ivx

with ∆x= 0, f ′(z) = lim
∆x→0

u(x,y+∆y)−u(x,y)
i∆y

+ iv(x,y+∆y)− iv(x,y)
i∆y

= vy − iuy
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The Cauchy-Reimann equations are then given by:

∂u

∂x
= ∂v

∂y
and

∂u

∂y
=−∂v

∂x

Similarly, for polar coordinates we have,

∂u

∂r
= 1
r

∂v

∂θ

∂v

∂r
=− 1

∂u
∂θ

Example,

z = x+ iy is differentiable because ux = vy = 1 and uy =−vx = 0, z′ = 1 + i

z̄ = z = x− iy is not differentiable because ux = 1,vy =−1,ux , vy although uy =−vx = 0.

13.3.2 Laplace’s Equation

Using Cauchy-Reimann equations we arrive at the Laplace’s equation,

∂2u

∂2x
= ∂2v

∂x∂y

∂2u

∂2y
=− ∂2v

∂x∂y
=⇒ ∂2u

∂2x
+ ∂2u

∂2y
= 0 ∂2v

∂2x
+ ∂2v

∂2y
= 0

v is called the harmonic conjugate function of u in D (not to be confused with z̄).

13.3.3 Trigonometric & Hyperbolic Functions

eix = cosx+ isinx e−ix = cosx− isinx

cosx= 1
2(eix + e−ix) sinx= 1

2(eix− e−ix)

coshz = 1
2(ez + e−z) sinhz = 1

2(ez − e−z)

(coshz)′ = sinhz (sinhz)′ = coshz

13.4 Complex Integration∫
C
f(z)dz =

∫
C

(u+ iv)(dx+ idy) =
[∫
C
udx−

∫
C
vdy

]
+ i

[∫
C
udy+

∫
C
vdx

]
Using parametric representation,

z(t) = x(t) + iy(t)

ż = dz

dt∫
C
f(z)dz =

∫ b
a
f [z(t)]ż(t)dt

Examples,

z = 3t− it2

dz

dt
= 3− i2t∫
f(z)dz =

∫
(3t− it2)(3− i2t)dt=

∫
(9t− 2t3− i9t2)dt=

(
− t

4

2 + 9t2

2

)
− i3t3
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Evaluate

∮
C

dz

z
= rieiθ

reiθ
dθ =⇒

∮
C

dz

z
= 2πi

∮
C

(z− z0)mdz

Let z(t) = z0 + reit =⇒ dz = ireitdt∮
C

(z− z0)mdz =
∫ 2π

0
rmeimtireitdt= irm+1

∫ 2i

0
ei(m+1)tdt=

{
2πi (m=−1)
0 (m ,−1)

13.4.1 Path Dependence

If we integrate a given function f(z) from a point z1 to a point z2 along different paths, the

integrals will in general have different values. A complex line integral depends not only on the

endpoints of the path but in general also on the path itself.

13.4.2 ML-Inequality
∣∣∣∣∮
C

f(z)dz
∣∣∣∣≤ML (L is length of C, |f(z)| ≤M, whereM is a constant)

This is evident from the fact that f(z) = reiθ has to be bounded in a given domain whose upper

limit is represented asM .

13.5 Cauchy’s Integral Theorem

A simple closed path is a closed path that does not intersect or touch itself.

An open and connected set is called a domain . In a simply connected domain D, any simple

closed curve C is the boundary of some region E which is contained in D. In simple words, a

region is simply connected if every closed curve within it can be shrunk continuously to a point

that is within the region. That means, a simply connected region is one that has no holes.

If f(z) is analytic in a simply connected domain D, then for every simple closed path C in D,

∮
C
f(z)dz = 0
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Since f(z) is analytic in D, f ′(z) exists in D. Assume f ′(z) to be continuous, i.e., u & v have

continuous ∂ derivatives in D 1.∫
C
f(z)dz =

∫
C

(u+ iv)(dx+ idy) =
[∫
C
udx−

∫
C
vdy

]
+ i

[∫
C
udy+

∫
C
vdx

]
(Replacing v with −v) in Green’s Theorem∮
c
u(x,y)dx−

∮
c
v(x,y)dy =

∫
R

∫ (
−∂v
∂x
− ∂u
∂y

)
dxdy

and using Cauchy-Reimann equations we have,

∂u

∂x
= ∂v

∂y

∂u

∂y
=−∂v

∂x[∫
C
udx−

∫
C
vdy

]
=
∫
R

∫ (
−∂v
∂x
− ∂u
∂y

)
dxdy = 0[∫

C
udy+

∫
C
vdx

]
=
∫
R

∫ (
∂u

∂x
− ∂v
∂y

)
dxdy = 0

=⇒
∮
c
f(z)dz = 0

13.5.1 Path Independence

If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent of
the path in D. This follows from Cauchy’s Integral Theorem.∮

c
f(z)dz = 0∫
c1
f(z)dz+

∫
c∗2
f(z)dz = 0∫

c1
f(z)dz =−

∫
c∗2
f(z)dz

∫
c1
f(z)dz =

∫
c2
f(z)dz

13.5.2 Cauchy’s Integral Theorem for Multiply Connected Domains

∮
C1
f(z)dz =

∮
C2
f(z)dz

∮
C1
f(z)dz =

∮
C2
f(z)dz+

∮
C3
f(z)dz

1Goursat proved without the condition that f ′(z) is continuous but the proof is complex.
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13.5.3 Existence of Indefinite Integral

If f(z) is analytic in a simply connected domain D, then there exists F (z) =
∫ z2
z1
f(z)dz which is

analytic in D and hence F ′(z) = f(z). The integral can be evaluated as:

F (z) =
∫ z2

z1
f(z)dz = F (z2)−F (z1)

F (z+∆z)−F (z)
∆z

= 1
∆z

∫ z+∆z

z
f(z∗)dz∗ = f(z)

∆z

∫ z+∆z

z
dz∗

f(z) = 1
∆z

∫ z+∆z

z
f(z)dz∗ = f(z)

∆z

∫ z+∆z

z
dz∗ (f(z) is constant)∣∣∣∣F (z+∆z)−F (z)

∆z
− f(z)

∣∣∣∣= 1
|∆z|

∣∣∣∣∣
∫ z+∆z

z
[f(z)∗− f(z)]dz∗

∣∣∣∣∣
≤ 1
|∆z|

ε|∆z|= ε

lim
∆z→0

F (z+∆z)−F (z)
∆z

= F ′(z) = f(z)

F (z) =
∫
f(z)dz

13.6 Cauchy’s Integral Formula

If f(z) is analytic in a simply connected domain D we have,

∮
C

f(z)
z− z0

dz = 2πif(z0)

f(z) = f(z0) + [f(z)− f(z0)]∮
C

f(z)
z− z0

dz = f(z0)
∮
C

1
z− z0

dz+
∮
C

f(z)− f(z0)
z− z0

dz = 2πif(z0) +
���

���
���

�:0∮
C

f(z)− f(z0)
z− z0

dz

The second term→ 0 because, given ε > 0, it is possible to find δ > 0 such that f(z)− f(z0)< ε
for all z in the disk |z− z0|< δ

Choosing the radius ρ ofK smaller. we have.∣∣∣∣f(z)− f(z0)
z− z0

∣∣∣∣< ε

ρ∣∣∣∣∮ f(z)− f(z0)
z− z0

dz

∣∣∣∣< ε

ρ
2πρ= 2πε= 0

13.6.1 Multiply Connected Domain

By extension, Cauchy’s theorem for multiply connected domain is given by:

∮
C1

f(z)
z− z0

dz+
∮
C2

f(z)
z− z0

dz+ · · ·+
∮
Cn

f(z)
z− z0

dz = 2πif(z0)
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13.7 Derivatives of Analytic Functions

f ′(z0) = 1
2πi

∮
C

f(z)
(z− z0)2dz

f ′′(z0) = 2!
2πi

∮
C

f(z)
(z− z0)2dz

f (n)(z0) = n!
2πi

∮
C

f(z)
(z− z0)n+1dz

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z)
∆z

Let’s represent f(z0 +∆z) and f(z0) by Cauchy’s integral formula:

f
′(z0) = 1

2πi∆z

∮
C

f(z)
z− (z0 +∆z)dz−

1
2πi∆z

∮
C

f(z)
z− z0

dz = 1
2πi

∮
C

f(z)
(z− z0−∆z)(z− z0)dz

Now,

∮
C

f(z)
(z− z0−∆z)(z− z0)dz−

∮
C

f(z)
(z− z0)2dz =

���
���

��
���

���:
0∮

C

f(z)∆z
(z− z0−∆z)(z− z0)2dz

The integral on the right → 0 as ∆z→ 0 as is evident from the following

Let |z− z0|2 ≥ d2 =⇒ 1
|z− z0|2

≤ 1
d2

d≤ |z− z0|= |z− z0−∆z+∆z| ≤ |z− z0−∆z|+ |∆z|

Let |∆z| ≤ d/2 =⇒ 1
|z− z0−∆z|

≤ 2
d∣∣∣∣∮

C

f(z)∆z
(z− z0−∆z)(z− z0)2)dz

∣∣∣∣≤ML|∆z|2
d

1
d2 (refer ML inequality)

As lim
∆z→0

the above integral→ 0

Hence, f ′(z0) = 1
2πi

∮
C

f(z)
(z− z0)2dz

13.7.1 Cauchy’s Inequality

|f (n)(z0)|= n!
2π

∣∣∣∣∮
C

f(z)
(z− z0)(n+1)dz

∣∣∣∣≤ n!
2πM

1
r(n+1) 2πr = n!M

rn

13.7.2 Liouville’s Theorem

If an entire function is bounded in absolute value in the whole complex plane, then this function

must be a constant. This is because if |f(z)|<M for all z, then by Cauchy’s inequality theorem

|f ′(z)<M/r. We can choose r to be arbitrarily large and hence f
′(z) = 0 and f(z) is constant.

13.7.3 Morera’s Theorem (Converse of Cauchy’s Integral Theorem)

If f(z) is continuous in a simply connected domain D and if

∮
C
f(z) = 0 for every closed path in

D, then f(z) is analytic in D.
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13.8 Power Series

Complex power series are analogs of real power in calculus. Complex power series represent

analog functions and conversely, every analytic function can be represented as a power series.

13.8.1 Taylor Series

The Taylor series is given by:

∞∑
n=0

an(z− z0)n = a0 + a1(z− z0) + a2(z− z0)2 + · · ·+Rn(z)

an = 1
n!f

(n)(z0) = 1
2πi

∮
C

f(z)
(z− z0)n+1dz

Rn(z) = (z− z0)n+1

2πi

∮
C

f(z∗)
(z∗− z0)n+1(z∗− z)dz

∗

AMaclaurin series is a Taylor series with center z0 = 0.∣∣∣∣ z− z0
z∗− z0

∣∣∣∣< 1

1
z∗− z

= 1
z∗− z0− (z− z0) = 1

(z∗− z0) ×
1(

1− z−z0
z∗−z0

)
Let q = z− z0

z∗− z0

1− q = z∗− z

1 + q+ q2 + · · ·+ qn = 1− qn+1

1− q = 1
1− q −

qn+1

1− q
1

1− q = 1 + q+ q2 + · · ·+ qn + qn+1

1− q
1

z∗− z
= 1
z∗− z0

[
1 + z− z0

z∗− z0
+
(
z− z0
z∗− z0

)2
+ · · ·+

(
z− z0
z∗− z0

)n]
+ 1
z∗− z

(
z− z0
z∗− z0

)n+1

In Cauchy’s integral formula, use z instead of z0 and z∗ instead of z,

z∗ is the variable of integration∮
C

f(z∗)
z∗− z

dz∗ = 2πif(z)

f(z) = 1
2πi

∮
C

f(z∗)
(z∗− z0)dz

∗+ 1
2πi

∮
C

f(z∗)
(z∗− z0)2dz

∗+ · · · 1
2πi

∮
C

f(z∗)
(z∗− z0)ndz

∗+Rn(z)

13.8.2 Laurent’s Series

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer

powers (and a constant term) and converges in a disk, a Laurent series is a series of positive and

negative integer powers of z− z0 and converges in an annulus (a circular ring) with center z0. It
converges for 0< |z− z0|<R, that is, everywhere except at z0 which is a singular point of f(z).
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The nonnegative powers are those of a Taylor series. The series, i.e. the

finite sum of the negative powers of the Laurent series is called the

principal part of the singularity of f(z) at z0 and is used to classify this

singularity. The coefficient of the power
1

z−z0
of this series is called the

residue of f(z) at z0. Residues are used in a technique called residue

integration for complex contour integrals and for certain complicated

real integrals.

f(z) =
∞∑
n=0

an(z− z0)n +
∞∑
n=0

bn
(z− z0)n

an = 1
2πi

∮
C

f(z)
(z− z0)n+1dz

bn = 1
2πi

∮
C

(z− z0)n−1f(z)dz

f(z) = f(z) + g(z) = 1
2πi

∮
C1

f(z∗)
z∗− z

dz∗
1

2πi

∮
C2

f(z∗)
z∗− z

dz∗

The first integral is the Taylor series of g(z).∣∣∣∣z∗− z0
z− z0

∣∣∣∣< 1

1
z∗− z

= 1
z∗− z0− (z− z0) = −1

(z− z0) ×
1(

1− z∗−z0
z−z0

)
q = z∗− z0

z− z0
1− q = z− z∗

1
1− q = 1 + q+ q2 + · · ·+ qn + qn+1

1− q
1

z∗− z
=− 1

z− z0

[
1 +

(
z∗− z0
z− z0

)
+
(
z∗− z0
z− z0

)2
+ · · ·+

(
z∗− z0
z− z0

)n]
− 1
z− z∗

(
z∗− z0
z− z0

)n+1

In Cauchy’s integral formula, use z instead of z0 and z∗ instead of z,

z∗ is the variable of integration

h(z) =− 1
2πi

∮
C2

f(z∗)
(z∗− z)dz

∗

= 1
2πi(z− z0

)
∮
C2
f(z∗)dz∗+ 1

2πi(z− z0)2 )
∮
C2
f(z∗)dz∗+ · · ·

+ 1
2πi(z− z0)n+1

∮
C2

(z∗− z0)nf(z∗)dz∗+ 1
2πi(z− z0)n+1

∮
C2

(z∗− z0)n+1

z− z∗
f(z∗)dz∗

13.9 Zero, Singularity, Infinity

A zero is a z at which f(z) = 0.

A function f(z) is singular or has a singularity at a point z = z0 if f(z) is not analytic and may

not be even defined at z = z0. If the principal part has finite terms such as:

b1
z− z0

+ · · ·+ b1
(z− z0)m where bm , 0
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The singularity of f(z) at z = z0 is called a pole , and m is called its order . Poles of the first

order are also known as simple poles.

If f(z) is analytic and has a pole at z = z0, then |f(z)| →∞ as z→ z0.

13.10 Residue Integration Method

The coefficient b1 of the first negative power
1

z−z0
of this Laurent series is given by the following

integral formula with n= 1:

b1 = 1
2πi

∮
C
f(z)dz

The coefficient b1 is called the residue of f(z) at z = z0 and we denote it by:

b1 = Res
z=z0

f(z)

For a simple pole at z = z0

f(z) = b1
z− z0

+ a0 + a1(z− z0) + a2(z− z0)2 + · · · (0< |z− z0|<R)

=⇒ Res
z=z0

f(z) = b1 = lim
z→z0

(z− z0)f(z)

The Taylor series of q(z) at a simple zero z0 is

q(z) = (z− z0)q′ + (z− z0)2

2! q
′′(z0) + · · ·

Res
z=z0

f(z) = Res
z=z0

p(z)
q(z) = p(z)

q
′(z0) = lim

z→z0

(z− z0)p(z)
(z− z0)[q′(z0) + (z− z0)q′′(z0)/2 + · · · ] = p(z0)

q
′(z0)

In general,

Res
z=z0

f(z) = 1
(m− 1)! lim

z→z0

[
dm−1

dzm−1 (z− z0)mf(z)
]

∮
C
f(z)dz = 2πi

k∑
j=1

Res
z=zj

f(z)
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Calculus of Variations

A functional is a function that accepts one or more functions as inputs and produces a real

valued number as an output. The calculus of variations or variational calculus is a field of

mathematical analysis that uses variations, which are small changes in functions and functionals,

to find maxima and minima of functionals.

One of the main problems of the calculus of variations is to determine that curve con-necting

two given points which either minimizes or maximizes some given integral. Consider a curve

connecting two points. Its length, S, is given by:

S =
∫ x2

x1

√
(dx)2 + (dy)2dx

S =
∫ x2

x1

√
(1 +

(
dy

dx

)2
dx

The problem of determining that curve connecting two points (x1,y1) and (x2,y2) whose length

is a minimum is the same as that of finding the curve Y = y(x) where y(x1) = y1, y(x2) = y2
such that:∫ x2

x1

√
(1 +

(
dy

dx

)2
dx is a minimum

In general, we want to find the curve Y = y(x) where y(x1) = y1, y(x2) = y2 such that for some

given function F (x,y,y′):∫ x2

x1
F (x,y,y′)dx (14.0.1)

is either a minimum or a maximum, otherwise also referred to as an extremum or stationary
value. The function which satisfies this property is called an extremal . The above integral

assumes a numerical value for some class of functions y(x) is a functional.

14.1 Euler-Lagrange Equation

Let y = f(x) be the function be the curve joining (x1,y1), (x2,y2) which makes

∫ x2
x1
F (x,y,y′)dx

an extremum.

Let,

ȳ(x) = y(x) + εη(x) ε is a constant

η(x1) = η(x2) = 0

ȳ
′(x) = ȳ

′(x) + εη
′(x)

I =
∫ x2

x1
F (x,y,y′)dx

be a neighbouring curve connecting these points. To satisfy the boundary conditions, we have:

87
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dI

dε

∣∣∣∣∣
ε=0

= dI

dε

∣∣∣∣∣
ε=0

∫ x2

x1
F (x,y,y′)dx

=
∫ x2

x1

dI

dε

(
F (x,y,y′)

)∣∣∣∣∣
ε=0

dx= 0 (Leibnitz’s rule)

=
∫ x2

x1

∂F∂x ����
0

∂x

∂ε
+ ∂F

∂ȳ

∂ȳ

∂ε
+ ∂F

∂ȳ
′
∂ȳ
′

∂ε

∣∣∣∣∣
ε=0

dx= 0

=
∫ x2

x1

∂F
∂ȳ

η+ ∂F

∂ȳ
′ η
′

∣∣∣∣∣
ε=0

dx= 0

When ε = 0 =⇒ ȳ = y, ȳ
′ = y

′

∫ x2

x1

∂F
∂y

η+ ∂F

∂y
′ η
′

∣∣∣∣∣
ε=0

dx= 0 1st Variation, Weak Form

∫ x2

x1

(
∂F

∂y

)
ηdx+

�
�
�
�
��>

0(
∂F

∂y
′

)
η

∣∣∣∣∣
x2

x1

−
∫ x2

x1

d

dx

(
∂F

∂y
′

)
ηdx= 0

∫ x2

x1

(
∂F

∂y
− d

dx

(
∂F

∂y
′

))
ηdx= 0 1st Variation, Strong Form

∂F

∂y
− d

dx

(
∂F

∂y
′

)
= 0 Euler-Lagrange equation


	Contents
	Preface
	Symbolic Computation
	Introduction

	Function
	Function, Domain & Range
	Piecewise Continuous & Discontinuous Functions
	Increasing & Decreasing Functions
	Even & Odd Functions
	Types of Functons
	Sums, Differences, Products & Quotients of Functions
	Function Composition
	Vertical & Horizontal Scaling, Reflecting a Function
	Basic Trigonometric Function Definitions
	Basic Trigonometric Identities

	Limit
	Definition of Limit
	Formal Definition of Limit
	Laws of Limit
	An Important Limit
	One Sided Limits
	Continuous Function
	Infinite Limits
	Rolle's Theorem
	Mean Value Theorem

	Derivative
	Definition of a Derivative
	Derivative of a Polynomial Term
	Derivatives of a Trigonometric Function
	Derivative of a log function
	Chain Rule
	Derivative of an exponential function
	Implicit Differentiation
	Product Rule 
	Quotient Rule
	L’Hôpital's rule
	Concave Up (Convex) & Concave Down
	Euler's number
	Hyperbolic Functions
	Partial Derivatives

	Integral
	Integral
	Common Integrals
	Substitution Technique
	Integration by Parts
	Definite Integral
	Some Integration Strategies

	First Order Ordinary Differential Equation
	Differential Equation
	Standard & Differential forms of an ODE
	Order & Degree of a Differential Equation
	Solving ODE- Method of Separation of Variables 
	Solving ODE - Reduction to Separable Form
	Solving ODE - Exact ODE & Integrating Factor 
	Inexact ODE
	Integrating Factor to transform to an exact ODE
	1st Order Linear ODE - Homogeneous
	1st Order ODE - Non Homogeneous
	Reduction to Linear Form - Bernoulli Equation

	Second Order Ordinary Differential Equation
	Power Series
	Power Series, Taylor Series & Maclaurin Series

	2nd Order Linear ODE
	Lagrange's Method of Reduction of Order
	Homogeneous Linear ODE with Constant Coefficients
	Euler-Cauchy Equations
	The Wronskian
	Non-homogeneous ODE
	Particular Solution by Variation of Parameters (Lagrange)

	Higher Order ODE
	Higher Order Homogeneous ODE
	Higher Order Non-Homogeneous ODE
	Method of Undetermined Coefficients
	Method of Variation of Parameters

	Series Solutions of Homogeneous ODEs
	Power Series Method

	Existence of Power Series Solutions
	Classical Differential Equations
	Legendre’s Equation
	Legendre Polynomials

	Frobenius Method
	Bessel's Equation
	Bessel functions for real number
	General Solution
	Bessel functions of the second kind, Y(x)
	Bessel functions of the second kind, Yn (x)


	Matrices
	Definition of a Matrix
	DEFINITIONS & OPERATIONS INVOLVING MATRICS
	Equality
	Addition (or subtraction):
	Scalar Multiplication
	Matrix Multiplication
	Transpose of a Matrix
	Principal Diagonal
	Trace of a Matrix

	Types of Matrices
	Diagonal Matrix
	Zero or Null Matrix
	Unit or Identity Matrix
	Symmetric Matrix & Skew Symmetric Matrix
	Orthogonal Matrix
	Complex Conjugate of a Matrix
	Hermitian & Skew-Hermitian Matrices
	Unitary Matrix

	Linear System of Equations
	Gaussian Elimination
	Jacobi's Iterative Method
	Gauss - Seidel Method

	Rank of a Matrix, Linear Independence
	Rank
	Existence & Uniqueness of Solutions in Linear Systems
	Null Space and Nullity
	Rank Nullity Theorem

	Determinant
	Properties of Determinants
	Cramer's Rule

	Inverse of a Matrix
	Inverse by Gauss Jordan method
	Inverse by Cofactors
	Property of Matrix Inverse

	Eigenvalue &Eigenvector
	Algebraic Multiplicity
	Geometric Multiplicity
	Defective eigenvalues
	Real Eigenvalues
	Matrix Diagonalization
	Positive Definite Matrix
	Quadratic Form & Positive Definiteness


	Vector
	Vector Algebra
	Vector Addition & Subtraction
	Scalar Multiplication
	Unit Vector
	Linear Independence & Dependence
	Scalar & Vector Fields
	Vector Space Rn

	Vector Spaces
	Dimension
	Basis
	Span
	Subspace

	Vector Products
	Dot Product
	Inner Product
	Cross Product
	Scalar Triple Product
	Reciprocal Set
	Vector Properties
	Gram–Schmidt orthonormalization

	Vector Differentiation
	Differential Geometry
	Frenet–Serret Formulae
	Gradient
	Divergence
	Curl

	Vector Integration
	Line Integration
	Surface Integration
	Volume Integration
	Gauss' Divergence Theorem
	Stoke's Theorem
	Green's Theorem


	System of ODE
	System of ODE
	Qualitative Analysis, Critical Point & Stability
	Qualitative Analysis, Critical Point & Stability

	Laplace Transform
	Definition
	Basic Transforms
	Linearity
	s - Shifting
	Existance & Uniqueness
	Laplace Transforms of Derivatives
	Laplace Transforms of Integrals
	Laplace Transforms for solving ODEs
	Unit Step Function (Heaviside Function)
	Time Shifting (t-Shifting)
	Dirac Delta Function
	Convolution
	Differentiation of Transforms
	Integration of Transforms


