
The Rust Programming Language

Jaideep Ganguly

September 29, 2020

Reference Book

Moving to the Rust programming language by Jaideep Ganguly
free download from https://jganguly.github.io

Jaideep Ganguly The Rust Programming Language September 29, 2020 2 / 59

https://jganguly.github.io/assets/rust.pdf
https://jganguly.github.io

Agenda
1 Fundamental Principles behind Rust

2 A Quick Comparison with Go

3 Cargo Package Manager

4 Ownership, Borrowing, Referencing

5 Struct & Trait & Trait Bound

6 Enum, Pattern Matching & Error Handling

7 Closure

8 Smart Pointer

9 Concurrency
Jaideep Ganguly The Rust Programming Language September 29, 2020 3 / 59

Fundamental Principles behind Rust

1 Ownership and safe borrowing of data

2 Functions, methods and closures to operate on data

3 Tuples, structs and enums to aggregate data

4 Matching pattern to select and destructure data

5 Traits to define behavior on data

Jaideep Ganguly The Rust Programming Language September 29, 2020 4 / 59

A comparison with Go

1 Go is incredibly easy to learn. Go is small. Finding and using libraries
from the ecosystem is very easy. Rust has a steeper learning curve.

2 Go takes lots of bits from other languages and improves them, there
is little new. Rust has unique concepts.

3 Go compiles faster than Rust. Rust runs much faster than Go. Rust
runs as well or faster than C. Rust performance

4 Go is Garbage collected, Rust is not. Go is not a systems language,
Rust is. Go has no Macros, no Generics. Go code, including error
handling, becomes repetitive quickly. Go Interfaces are not
sophisticated. Go has no first class enums. Go switch may be
non-exhaustive. Go routines and channels have lightweight syntax for
spawning Go routines.

Jaideep Ganguly The Rust Programming Language September 29, 2020 5 / 59

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-go.html

Why Rust?
1 Rust is safe by default . All memory accesses are checked and it is

not possible to corrupt memory by accident.

2 With direct access to hardware and memory, Rust is an ideal language
for embedded and bare-metal development. One can write extremely
low-level code such as OS kernels. It is also a very pleasant language
to write application code as well.

3 Rust’s strong type system and emphasis on memory safety, all
enforced at compile time, mean that it is extremely common to
get errors when compiling your code .

4 If a program has been written so that no possible execution can
exhibit undefined behavior, we say that program is well defined. If a
language’s safety checks ensure that every program is well defined, we
say that language is type safe. Rust is Type Safe. Rust
guarantees that concurrent code is free of data races.
Jaideep Ganguly The Rust Programming Language September 29, 2020 6 / 59

Why Rust?

5 Rust strives to have as many zero-cost abstractions as possible,
abstractions that are as equally performant as corresponding
hand-written code. Zero-cost abstraction means that there’s no extra
runtime overhead for certain powerful abstractions or safety features
that you do have to pay a runtime cost for other languages.

6 Rust strives to have a very fast run time. It does this in part by
compiling to an executable and
injecting only a very minimal language runtime and does not
provide a memory manager , i.e., garbage collector that operates
during the executable’s runtime.

7 Rust gives you the choice of storing data on the stack or on the heap
and determines at compile time when memory is no longer needed
and can be cleaned up. This allows efficient usage of memory as
as well more performant memory access .
Jaideep Ganguly The Rust Programming Language September 29, 2020 7 / 59

Ownership, Borrowing, Referencing & Lifetime

1 Ownership begins with assignment and ends with scope. When a
variable goes out of scope, its associated value, if any, is dropped .
A dropped value can never be used again because the resources it
uses are immediately freed. However, a value can be dropped before
the end of a scope if the compiler determines that the owner is no
longer used within the scope.

2 pub fn scope() {
3 {
4 let x = 1;
5 println!("x: {}", x);
6 }
7
8 // println!("x: {}", x); // ERROR
9 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 8 / 59

Reassignment is a Move
2 Reassignment of ownership (as in let b = a) is known as a move . A

move causes the former assignee to become uninitialized and
therefore not usable in the future.

13 pub fn reassignfail() {
14 let a = vec![1, 2, 3]; // a growable array literal
15 let b = a; // a can no longer be used beyond this

line
16 println!("b: {:?}", b);
17 // println!("a: {:?}", a); // ERROR
18 }

3 Another form of reassignment occurs while returning a value from a
function. But this will work as functions no longer have ownership of
the returned values once its scope ends.

39 pub fn inc_vec(x: i32) −> Vec<i32> {
40 let result = vec![x, x+1, x+2, x+3, x+4]; // allocated on heap
41 result
42 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 9 / 59

Reasignment of Stack Variables

4 During reassignment, for variables in the stack, instead of
moving the values owned by the variables, their values are
copied. The following code will work correctly.

66 pub fn copy_trait_example() {
67 let a = 42;
68 let b = 94;
69 let c = a + b;
70 println!("The sum of {} and {} is {}", a, b, c); // NO ERROR
71 }

5 To do deep copy the heap data of the String, use clone .
1 let s1 = String::from("hello");
2 let s2 = s1.clone();
3
4 println!("s1 = {}, s2 = {}", s1, s2);

Jaideep Ganguly The Rust Programming Language September 29, 2020 10 / 59

Struct & Copy

6 Structs do not implement Copy by default. Reassignment of a struct
variable leads to a move, not a copy. However, it is possible to
automatically derive the Copy and Clone trait as follows.

75 pub fn struct_copy_example() {
76
77 #[derive(Debug,Clone,Copy)]
78 struct Person {
79 age: i8
80 }
81
82 let alice = Person { age: 42 };
83 let bob = alice;
84
85 println!("alice: {:?}\nbob: {:?}", alice, bob);
86 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 11 / 59

Referencing or Borrowing and Mutable References
7 Many resources are too expensive in terms of time or memory be

copied for every reassignment. Rust offers the option to borrow using
& .

90 pub fn ref_example() {
91 let s = String::from("hello");
92 let len = calculate_length(&s);
93 println!("The length of ’{}’ is {}.", s, len); // no error
94 }

8 To mutate a reference, annotate the type with mut in the caller
function and with &mut in the function arguments.

Listing 1: Mutable reference
104 pub fn mut_ref_example() {
105 let mut s = String::from("Hello");
106 change(&mut s);
107 println!("{}",s);
108 }

Listing 2: Mutable reference
104 fn change(some_string: &mut String) {
105 some_string.push_str(" world!");
106 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 12 / 59

Mutable Reference Restrictons

9 But mutable references have one big restriction. You can have only
one mutable reference to a particular piece of data in a
particular scope.

117 pub fn mut_ref_restrict() {
118 let mut s = String::from("hello");
119
120 let r1 = &mut s;
121 let r2 = &mut s;
122
123 // ERROR: will not compile
124 // cannot borrow ’s’ as mutable more than once at a time
125 println!("{}, {}", r1, r2);
126 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 13 / 59

Mutable Reference Restrictons

10 We also cannot have a mutable reference while we have an
immutable one.

Listing 3: Mutable reference restriction
130 pub fn mut_ref_restrict2() {
131 let mut s = String::from("hello");
132
133 // ERROR: will not compile
134 // cannot borrow ’s’ as mutable because it is also borrowed as

immutable.
135 let r1 = &s; // no problem
136 let r2 = &mut s; // problem
137
138 println!("{}, {}", r1, r2);
139 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 14 / 59

Mutable References

11 However, the following code will work because the last usage of the
immutable references occurs before the mutable reference is
introduced.

1 let mut s = String::from("hello");
2
3 let r1 = &s; // no problem
4 let r2 = &s; // no problem
5 println!("{} and {}", r1, r2);
6 // r1 and r2 are no longer used after this point
7
8 let r3 = &mut s; // no problem
9 println!("{}", r3);

These restrictions prevent data races at compile time which can
happen if (a) two or more pointers access the same data at the same
time, (b) at least one of the pointers is being used to write to the
data, (c) there is no mechanism being used to synchronize access to
the data.

Jaideep Ganguly The Rust Programming Language September 29, 2020 15 / 59

Dangling Reference

12 The Rust compiler guarantees that references will never be dangling
references.

151 fn dangle() −> &String { // ERROR: will not compile
152 let s = String::from("hello");
153 &s
154 }

13 The solution here is to simply return the String directly.
159 fn no_dangle() −> String {
160 let s = String::from("hello");
161 s
162 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 16 / 59

Slices

14 Slices let you reference a contiguous sequence of elements in a
collection rather than the whole collection. Slices do not have
ownership.

Listing 4: Slice
1 let s = String::from("hello world");
2 let hello = &s[0..5];
3 let world = &s[6..11];

Jaideep Ganguly The Rust Programming Language September 29, 2020 17 / 59

Lifetime
15 Sometimes we will want a function to return a borrowed value.
167 pub fn lifetime_example(x: &str, y: &str) −> &str { // Error
168 if x.bytes().len() > y.bytes().len() {
169 x
170 } else {
171 y
172 }
173 }

16 With lifetime , the compiler is able to determine that the valid scope
of the value whose borrowed reference it returns, matches the lifetime
of the parameters x and y.

178 pub fn lifetime_example<’a>(x: &’a str, y: &’a str) −> &’a str {
179 if x.bytes().len() > y.bytes().len() {
180 x
181 } else {
182 y
183 }
184 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 18 / 59

Struct & Method
1 A struct allows us to group related code together and model our

application after entities in the real world.
1 // ’derive’ auto creates implementation to print the struct
2 #[derive(Debug)]
3 struct Rect {
4 width: u32,
5 height: u32,
6 }
7 impl Rect {
8 fn area(&self) −> u32 {
9 self.width ∗ self.height

10 }
11 }
12
13 fn main() {
14 let rect = Rect {
15 width: 30,
16 height: 50,
17 };
18 println!("The area of the rectangle is {}", rect.area());
19 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 19 / 59

Trait
1 A trait is an equivalent of a Java interface.
2 pub trait Animal {
3 fn eat(&self) {
4 println!("I eat grass");
5 }
6 }
7
8 pub struct Herbivore;
9

10 impl Animal for Herbivore{
11 fn eat(&self) {
12 println!("I eat plants");
13 }
14 }
15
16 pub struct Carnivore;
17
18 impl Animal for Carnivore {
19 fn eat(&self) {
20 println!("I eat meat");
21 }
22 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 20 / 59

Trait ... Contd.

2 Usage:
1 use tra::Animal;
2
3 let h = tra::Herbivore;
4 h.eat();
5
6 let c = tra::Carnivore;
7 c.eat();

Jaideep Ganguly The Rust Programming Language September 29, 2020 21 / 59

Trait Bound

3 Consider the following.
27 pub trait Activity {
28 fn fly(&self);
29 }
30
31 #[derive(Debug)]
32 pub struct Eagle;
33
34 impl Activity for Eagle {
35 fn fly(&self) {
36 println!("{:?} is flying",&self);
37 }
38 }
39
40 pub fn activity<T: Activity + std::fmt::Debug>(bird: T) {
41 println!("I fly as an {:?}",bird);
42 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 22 / 59

Trait Bound ... Contd.

4 But adding the following line will result in a compile error. This is
because the struct Hen does not implement the trait Activity .

1 let hen = tra::Hen;
2 tra::activity(hen); // COMPILE ERROR

5 The function activity takes a generic T as an argument, the
generic T must implement trait Activity . Trait bounds allow a a
function to only accept types that implement a certain trait.

6 Any invocation of the function with an instance of a struct that
does not implement the trait will result in a compile error. Such
a function is said to be trait bound.

Jaideep Ganguly The Rust Programming Language September 29, 2020 23 / 59

Trait Object

7 Trait objects behave more like traditional objects, they contain both
data and behavior . In trait objects, the data is referenced
through a pointer to the data that is actually stored in the heap.

8 The size of a trait is not known at compile-time. Therefore, traits
have to be wrapped inside a Box when creating a vector trait
object. A trait object is an object that can contain objects of different
types at the same time (e.g., a vector). The dyn keyword is used
when declaring a trait object. So,

1 Box<Trait> becomes Box<dyn Trait>

2 &Trait and &mut Trait become &dyn Trait and
&mut dyn Trait

Jaideep Ganguly The Rust Programming Language September 29, 2020 24 / 59

Trait Object ... Contd.

9 Various struct
46 pub struct Hen;
47
48 #[derive(Debug)]
49 pub struct Horse;
50
51 #[derive(Debug)]
52 pub struct Deer;
53
54 #[derive(Debug)]
55 pub struct Tiger;
56
57 #[derive(Debug)]
58 pub struct Duck;

60 pub trait Sound {
61 fn sound(&self);
62 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 25 / 59

Trait Object ... Contd.

10 Implementations
64 impl Sound for Horse {
65 fn sound(&self) {
66 println!("{:?} neighs",&self)
67 }
68 }
69
70 impl Sound for Deer {
71 fn sound(&self) {
72 println!("{:?} barks",&self)
73 }
74 }
75
76 impl Sound for Tiger {
77 fn sound(&self) {
78 println!("{:?} roars",&self)
79 }
80 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 26 / 59

Trait Object ... Contd.

11 Implementations
82 impl Sound for Duck {
83 fn sound(&self) {
84 println!("{:?} quacks",&self)
85 }
86 }
87
88 pub struct SoundBook {
89 pub sounds: Vec<Box<dyn Sound>>
90 }
91
92 impl SoundBook {
93
94 pub fn run(&self) {
95 for s in self.sounds.iter() {
96 s.sound();
97 }
98 }
99 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 27 / 59

Enum

1 Rust enums can contain context, it can be a different for each variant
of the enum. We can put data directly into each enum variant.

10 #[derive(Debug)]
11 pub struct MyBlack {
12 pub name: String,
13 pub rgb: (u8,u8,u8)
14 }
15
16 #[derive(Debug)]
17 pub enum Color {
18 Black(MyBlack),
19 White(u8,u8,u8)
20 }
21
22 impl Color {
23 pub fn printColor(&self) {
24 println!("Hi!");
25 }
26 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 28 / 59

Enum & Matching

2 Invoking:
1 let my_black = enu::MyBlack {
2 name: String::from("my black"),
3 rgb: (10,10,10)
4 };
5 let black = enu::Color::Black(my_black);
6 let white = enu::Color::White(255,255,255);
7 println!("{:?}",black);
8 println!("{:?}",white);

3 match can be used to compare values stored in an enum .
132 match black {
133 fn_07_enu::Color::White(x,y,z) => println!("{} {} {}",x,y,

z),
134 fn_07_enu::Color::Black(x) => println!("{:?}",x.rgb),
135 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 29 / 59

Option Enum

4 Option is a predefined enum in the Rust standard library.
1 enum Option<T> {
2 Some(T), // used to return a value
3 None // used to indicate null, Rust does not support

null
4 }

Rust does not support the null keyword.
1 let x: Option<u32> = Some(2);
2 assert_eq!(x.is_some(), true);
3
4 let x: Option<u32> = None;
5 assert_eq!(x.is_some(), false);
6
7 let y = x.unwrap(); // unwraps and gets the value

Jaideep Ganguly The Rust Programming Language September 29, 2020 30 / 59

Matches are Exhaustive
5 Matches in Rust are exhaustive. We use the special pattern _

instead to handle the rest. The () is just the unit value.
172 let some_u8_value = 4u8;
173 match some_u8_value {
174 1 => println!("One"),
175 3 => println!("Three"),
176 5 => println!("Five"),
177 7 => println!("Seven"),
178 9 => println!("Nine"),
179 _ => (),
180 }

6 if let .
1 fn main() {
2 let some_u8_value = Some(0u8);
3 if let Some(3) = some_u8_value {
4 println!("three");
5 }
6 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 31 / 59

Error Handling with Result Enum

7 The enum Result <T,E> is used to handle recoverable errors.
1 enum Result<T,E> {
2 OK(T),
3 Err(E)
4 }

1 use std::fs::File;
2 let f = File::open("mypicture.jpg"); // file does not

exist
3 match f {
4 Ok(f)=> {
5 println!("file found {:?}",f);
6 },
7 Err(e)=> {
8 println!("file not found \n{:?}",e); //handled error
9 }

10 }
11 println!("I will print this");

Jaideep Ganguly The Rust Programming Language September 29, 2020 32 / 59

Macro

1 An awesome and powerful feature of Rust is its ability to use and
create macros. Macros are created using macro_rules!

1 macro_rules! hi {
2 ($name : expr) => {
3 println!("Hi {:?}", $name);
4 };
5 }

2 Macros simply allows you to invent your own syntax and write code
that writes more code. This is called metaprogramming, which allows
for syntactic sugars that make your code shorter and make it easier to
use your libraries. You could even create your own DSL
(Domain-Specific Language) within rust.

Jaideep Ganguly The Rust Programming Language September 29, 2020 33 / 59

Macro ... Contd.

3 Many of the macros can take multiple inputs.
1 macro_rules! map {
2 ($($key : expr => $value : expr), ∗) => {{
3 let mut hm = HashMap::new();
4 $(hm.insert($key,$value);)∗
5 hm
6 }};
7 }

1 use std::collections::HashMap;
2 let person = map! (
3 "name" => "Tim",
4 "gender" => "male"
5);
6 println!("{:?}", person);

1 {"name": "Tim", "gender": "male"}

4 In Rust, println! and vec! are macros .
Jaideep Ganguly The Rust Programming Language September 29, 2020 34 / 59

Closure

5 Rust’s closures are anonymous functions that can be saved in a
variable or can be passed as arguments to other functions.

6 Closures do not require annotating the types of the parameters or the
return values.

7 Closures are not exposed through interfaces.
1 let some_closure = |number: u32| −> u32 {
2 println!("calculating ...");
3 thread::sleep(Duration::from_secs(3));
4 number + 1
5 };

8 To define a closure, we start with a pair of vertical pipes | , inside
which we specify the parameters to the closure. This syntax is similar
to the closure definitions in Smalltalk and Ruby languages.

Jaideep Ganguly The Rust Programming Language September 29, 2020 35 / 59

Function Receiving a Closure
9 Example with traits FnOnce (self) , FnMut (&mut self) , Fn (&self)

1 pub fn closure_example3(x:i32) −> i32 {
2
3 let y = 3;
4 let add = |x| {
5 x + y
6 };
7 let result = receive_closure(add, x);
8 result
9 }

10
11 // function receives a closure and returns an i32
12 fn receive_closure<F>(f: F, x: i32) −> i32
13 where
14 F: Fn(i32) −> i32
15 {
16 f(x) as i32
17 }

1 let result = fn_11_clo::closure_example3(5);
2 println!("Result from closure i s {}",result);

Jaideep Ganguly The Rust Programming Language September 29, 2020 36 / 59

struct Cacher

10 struct
42 struct Cacher<T>
43 where
44 T: Fn(u32) −> u32, // trait bound
45 {
46 calc: T, // calc stores the closure that is trait bound
47 value: Option<u32>, // Result of calling the function calc
48 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 37 / 59

Memoization or Lazy Evaluation Pattern
11 Memoization or Lazy Evaluation Pattern
52 impl<T> Cacher<T>
53 where
54 T: Fn(u32) −> u32 , // trait bound
55 {
56 fn new(calc: T) −> Cacher<T> {
57 Cacher { // expression returning the function
58 calc,
59 value: None
60 }
61 }
62
63 fn func(&mut self, arg: u32) −> u32 {
64 match self.value {
65 Some(v) => v, // value exists, return v
66 None => { // value does not exit
67 let v = (self.calc)(arg); // invoke calc with arg
68 self.value = Some(v); // wrap value in Option
69 v // return v
70 }
71 }
72 }
73 } Jaideep Ganguly The Rust Programming Language September 29, 2020 38 / 59

Cacher Example

12 Example usage of Cacher

77 use std::thread;
78 use std::time::Duration;
79 use core::fmt;
80
81 pub fn generate_force(hp: u32, random_number: u32) {
82
83 let mut my_closure = Cacher::new(|number| {
84 println!("calculating HP ...");
85 thread::sleep(Duration::from_secs(1));
86 number
87 });

Jaideep Ganguly The Rust Programming Language September 29, 2020 39 / 59

Cacher Example

13 Example usage of Cacher

89 if hp < 25 {
90 println!("Low HP drive slow {}", my_closure.func(hp));
91 println!("Low HP drive steady {}", my_closure.func(hp));
92 } else {
93
94 if random_number == 3 {
95 println!("No HP generated");
96 } else {
97 println!(
98 "Sufficient HP {}", my_closure.func(hp)
99);

100 }
101 }
102 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 40 / 59

Cacher Example

14 Example usage of Cacher

89 if hp < 25 {
90 println!("Low HP drive slow {}", my_closure.func(hp));
91 println!("Low HP drive steady {}", my_closure.func(hp));
92 } else {
93
94 if random_number == 3 {
95 println!("No HP generated");
96 } else {
97 println!(
98 "Sufficient HP {}", my_closure.func(hp)
99);

100 }
101 }
102 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 41 / 59

Smart Pointers

1 References are pointers that only borrow data.

2 Smart pointers, in many cases, own the data they point to.
Smart pointers are mostly implemented using structs. These structs
implement the Deref and Drop traits.

3 The Deref trait allows an instance of the smart pointer struct to
behave like a reference so that the code works with either references
or smart pointers.

4 The Drop trait allows us to customize the code that is run when an
instance of the smart pointer goes out of scope.

Jaideep Ganguly The Rust Programming Language September 29, 2020 42 / 59

Smart Pointers

5 Boxes allow you to store data on the heap rather than the
stack. What remains on the stack is the pointer to the heap data.
Boxes do not have any performance overhead, other than storing their
data on the heap instead of on the stack. Box is useful under these
circumstances.

6 A type whose size is unknown at compile time and we want to use a
value of that type in a context that requires an exact size.

7 A large amount of data, we want to transfer ownership but do not
want the data to be copied.

8 Own a value and its type must implement a certain trait rather being
of a particular type.

1 let x = Box::new(100);
2 println!("x = {}", x);

Jaideep Ganguly The Rust Programming Language September 29, 2020 43 / 59

Deref trait

9 Implementing the Deref trait allows you to customize the behavior
of the dereference operator.

1 #[derive(Debug)]
2 struct MyBox<T> { // same as: struct MyBox<T>(T);
3 a: T
4 }

1 use std::ops::Deref;
2 impl<T> Deref for MyBox<T> {
3 type Target = T;
4
5 fn deref(&self) −> &T {
6 &self.a
7 }
8 }

1 let x = MyBox{a:100};
2 println!("{}",∗(x.deref()));

Jaideep Ganguly The Rust Programming Language September 29, 2020 44 / 59

Drop trait

10 In languages such as C/C++, the programmer must call code to free
memory or resources every time they finish using an instance of a
smart pointer. If they forget, the system might become overloaded
and crash.

11 In Rust, you specify a particular bit of code be run whenever a value
goes out of scope and the compiler will insert this code automatically
when you implement the Drop trait.

12 While implementing the Drop trait on a type, you can specify what
needs to happen which can include activities such as releasing
resources such as files, network connections, DB connections, etc.

Jaideep Ganguly The Rust Programming Language September 29, 2020 45 / 59

Drop trait

13 Implement Drop
1 struct mysmaptr {
2 data: String
3 }

1 impl Drop for mysmaptr {
2 fn drop(&mut self) {
3 println!("Dropping struct mysmaptr with data {}", self.data);
4 }
5 }

1 let x = mysmaptr{ data : String::from("Hello") };
2 println!("struct mysmaptr with data {}", x.data);

Jaideep Ganguly The Rust Programming Language September 29, 2020 46 / 59

Concurrency

1 Developers of Rust discovered that the ownership and type systems
are the keys to help manage memory safety and address concurrency
problems.

2 By leveraging Rust’s unique concept of ownership and type checking,
many concurrency errors are reduced to compile-time errors in Rust
rather than runtime errors.

3 Rust developers have nicknamed this aspect of Rust as fearless
concurrency. Fearless concurrency allows you to write code that is free
of subtle bugs and is easy to refactor without introducing new bugs.

Jaideep Ganguly The Rust Programming Language September 29, 2020 47 / 59

Mutex
4 No risk of forgetting to unlock the mutex
83 pub fn mutex_example() {
84 let counter = Arc::new(Mutex::new(0)); // atomic ref count
85 let mut handles = vec![]; // stores references to the

threads
86
87 for _ in 0..10 {
88 let counter = Arc::clone(&counter); // clone the arc
89
90 // use the move closure and spawn 10 threads
91 let handle = thread::spawn(move || {
92 let mut num = counter.lock().unwrap();
93 ∗num += 1;
94 });
95 handles.push(handle);
96 }
97 // join the threads
98 for handle in handles {
99 handle.join().unwrap();

100 }
101 println!("Result: {}", ∗counter.lock().unwrap());
102 }
103 // end mutexJaideep Ganguly The Rust Programming Language September 29, 2020 48 / 59

Mutex

5 Mutex<T> is a smart pointer.

6 The call to lock returns a smart pointer called MutexGuard ,
wrapped in a LockResult that is handled with the call to unwrap .

7 The MutexGuard can be dereferenced to point to the data.

8 The MutexGuard has a drop implementation that releases the lock
once MutexGuard goes out of scope. With this, we do not risk
forgetting to unlock the mutex because this is done
automatically in Rust.

9 The smart pointer Arc<T> , an Atomically Referenced Counted
type. It is needed for thread safety in multi-threaded programs.

Jaideep Ganguly The Rust Programming Language September 29, 2020 49 / 59

Channel

10 An increasingly popular approach to ensuring safe concurrency is
message passing, where threads or actors communicate by sending
each other messages containing data.

11 “Do not communicate by sharing memory; instead, share
memory by communicating.”

12 Rust has implementation of a channel to send and receive messages
between concurrent sections of the code. A channel has two halves,
a transmitter and a receiver. Let’s look at the following code that has
multiple producers of messages and a single receiver.

Jaideep Ganguly The Rust Programming Language September 29, 2020 50 / 59

Channel
13 Channel
28 pub fn concur_example2() {
29 // multiple producer, single consumer
30 let (tx, rx) = mpsc::channel();
31
32 // clone a second producer
33 let tx2 = mpsc::Sender::clone(&tx);
34
35 // spawn a thread and move the transmitter into the closure
36 // spawned thread will now own the transmitter
37 thread::spawn(move || {
38 let vals = vec![
39 String::from("Hello"),
40 String::from("from"),
41 String::from("thread−1"),
42];
43
44 for val in vals {
45 tx.send(val).unwrap();
46 thread::sleep(Duration::from_secs(1));
47 }
48 });

Jaideep Ganguly The Rust Programming Language September 29, 2020 51 / 59

Channel

14 Channel
50 // same comments of the previous code block apply here.
51 thread::spawn(move || {
52 let vals = vec![
53 String::from("Hi"),
54 String::from("your"),
55 String::from("thread−2"),
56];
57
58 for val in vals {
59 tx2.send(val).unwrap();
60 thread::sleep(Duration::from_secs(1));
61 }
62 });
63
64 // receive the result, timeout beyond 1 sec
65 let result =
66 rx.recv_timeout(Duration::from_millis(1000));

Jaideep Ganguly The Rust Programming Language September 29, 2020 52 / 59

Channel

15 Channel
66 rx.recv_timeout(Duration::from_millis(1000));
67
68 match result {
69 Err(e) => {
70 println!("{:?}",e);
71 process::exit(0);
72 },
73 Ok(x) => {
74 for received in rx {
75 println!("Got: {}", received);
76 }
77 }
78 }
79 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 53 / 59

Async

16 Async/await are special pieces of Rust syntax that make it possible to
yield control of the current thread rather than blocking it allowing
other code to make progress while waiting on an operation to
complete.

17 The async/await syntax lets you write code that feels syn-chronous
but is actually asynchronous. In Rust, deferred computations due to
"long" running programs are called futures.

18 While most of the concepts are fairly similar with other programming
languages, in Rust you need to pick a runtime to actually run your
asynchronous code.

19 The de facto standard library providing a runtime system for green
threads and asynchronous I/O is tokio which we will use. It has
zero-cost abstractions and delivers bare-metal performance.

Jaideep Ganguly The Rust Programming Language September 29, 2020 54 / 59

Async

20 Async/Await

Listing 5: Async/Await example
2 use std::error::Error;
3 use std::time::{Duration, Instant};
4 use std::thread;
5 use futures::future;
6 use futures::join;
7 use tokio::macros::support::Future;

Jaideep Ganguly The Rust Programming Language September 29, 2020 55 / 59

Async

21 Async/Await

Listing 6: Async/Await example
9 #[tokio::main]

10 async fn main() −> Result<(), Box<dyn Error>> {
11
12 // Sequential execution
13 let t1 = Instant::now();
14 let mut x1 = 100;
15 let r1 = long_running_fn_1(&mut x1).await;
16 let r2 = long_running_fn_2().await;
17 let t2 = Instant::now(); println!("{} {} {:?}",r1,r2,t2−t1);
18
19 // Concurrent execution
20 let tasks = vec![
21 tokio::spawn(async move { long_running_fn_1(&mut x1).await

}),
22 tokio::spawn(async move { long_running_fn_2().await }),
23];

Jaideep Ganguly The Rust Programming Language September 29, 2020 56 / 59

Async

22 Async/Await

Listing 7: Async/Await example
24 // join the tasks
25 let t1 = Instant::now();
26 let r = futures::future::join_all(tasks).await; let t2 =

Instant::now();
27 println!("{:?} {:?}",r,t2−t1);
28 Ok(())
29 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 57 / 59

Async

23 Async/Await

Listing 8: Async/Await example
31 fn long_running_fn_1(x: &mut i32) −> impl Future<Output = i32> {

thread::sleep(Duration::from_secs(1));
32 ∗x = ∗x + 1;
33 future::ready(∗x)
34 }
35
36 async fn long_running_fn_2() −> i32 {
37 thread::sleep(Duration::from_secs(3));
38 42
39 }

Jaideep Ganguly The Rust Programming Language September 29, 2020 58 / 59

Questions?

Thank you!

Jaideep Ganguly The Rust Programming Language September 29, 2020 59 / 59

