
Moving to the Rust
programming language

Jaideep Ganguly
Version 1.3.1

Last updated on Tuesday 28th March, 2023





Contents

Contents i

List of Tables iv

List of Listings v

Preface ix

1 WHY RUST? 3
1.1 STATICALLY TYPED 3
1.2 TYPE SAFETY 3
1.3 RUNTIME 4
1.4 PERFORMANCE 5

2 GETTING STARTED 7
2.1 INSTALLATION 7
2.2 CREATING PROJECT WITH CARGO 7
2.3 BUILD & RUNWITH CARGO 9
2.4 CREATING A LIBRARYWITH CARGO 9
2.5 PUBLISHING ON CRATES.IO 9

3 BASIC CONCEPTS 11
3.1 VARIABLES &MUTABILITY 11
3.2 SHADOWING 12
3.3 DATA TYPES 12
3.4 SCALAR DATA TYPE 13

3.4.1 INTEGER TYPE 13
3.4.2 FLOATING-POINT TYPE 14
3.4.3 BOOLEAN TYPE 14
3.4.4 CHARACTER TYPE 14

3.5 COMPOUND DATA TYPE 15
3.5.1 TUPLE 15
3.5.2 ARRAY 15

3.6 FUNCTIONS 16
3.7 CONTROL FLOW 16
3.8 LOOPS 17
3.9 GENERICS 18
3.10 MACROS 18
3.11 MODULES 19
3.12 RUNNING TESTS 20
3.13 DOCUMENTATION 20

4 OWNERSHIP, BORROWING, REFERENCING & LIFETIME 21
4.1 OWNERSHIP 21

i



ii contents

4.2 REASSIGNMENT 22
4.3 CLONE 25
4.4 REFERENCING OR BORROWING 25
4.5 MUTABLE REFERENCE 26
4.6 DANGLING REFERENCES 28
4.7 SLICE TYPE 28
4.8 LIFETIME 29

4.8.1 STATIC 30

5 STRUCT 33
5.1 DEFINING A STRUCT 33
5.2 INSTANTIATING STRUCTS 33

5.2.1 FIELD INIT SHORTHAND 34
5.2.2 STRUCT UPDATE 34

5.3 TUPLE STRUCT 35
5.4 UNIT STRUCT 35
5.5 METHODS 35
5.6 OWNERSHIP OF STRUCT DATA 36
5.7 ASSOCIATED FUNCTIONS 37

6 TRAIT 39
6.1 INTRODUCTION TO TRAITS 39
6.2 TRAIT BOUND 40
6.3 TRAIT OBJECT 41

7 ENUM& PATTERNMATCHING 45
7.1 DEFINING AN ENUM 45
7.2 STRUCT & ENUM 45
7.3 OPTION ENUM 46
7.4 MATCH STATEMENT 47
7.5 IF LET STATEMENT 48

8 COLLECTIONS 49
8.1 VECTOR 49
8.2 HASHMAP 51
8.3 HASHSET 52

9 ERROR HANDLING 55
9.1 RECOVERABLE ERRORS 55

10 INPUT & OUTPUT 57
10.1 STANDARD I/O - READ &WRITE 57
10.2 COMMAND LINE ARGS 57
10.3 FILE I/O - READ &WRITE 58
10.4 APPEND TO A FILE 58
10.5 COPY A FILE 58
10.6 DELETE A FILE 59



contents iii

11 CLOSURES 61
11.1 CLOSURES 61
11.2 STORING CLOSURES WITH Fn TRAIT 63

12 SMART POINTERS 67
12.1 BOX 67

12.1.1 CONS LIST 68
12.2 DEREF TRAIT 69
12.3 DROP TRAIT 69

13 CONCURRENCY 71
13.1 THREADS 72
13.2 MESSAGE PASSING TO TRANSFER DATA BETWEEN THREADS 73

13.2.1 CHANNELS & OWNERSHIP TRANSFERENCE 74
13.3 SHARED STATE CONCURRENCY 75
13.4 ASYNC/AWAIT 76

14 APPLICATIONS 81
14.1 MULTI THREADEDWEB SERVER 81
14.2 DATABASE CRUD API 85
14.3 ACTIX WEB FRAMEWORKWITH DIESEL 86

15 Useful Utilities 95

Bibliography 97

Index 98



List of Tables

3.1 Integer Types in Rust 13
3.2 Integer Literals in Rust 13

iv



List of Listings

2.1 Installation in MacOS or Linux 7
2.2 Cargo 7
2.3 Project with Cargo 7
2.4 Project with Cargo 8
2.5 Hello World! 8
2.6 Build & Run 9

3.1 main.rs for functions explaining basic concepts 11
3.2 Variables & Mutability 11
3.3 Shadowing 12
3.4 Type Annotation 12
3.5 Data types 14
3.6 Data types 15
3.7 Data types 15
3.8 Data types 16
3.9 Control Flow 16
3.10 Loops 17
3.11 Generic example 18
3.12 Using mod 19
3.13 Function defined in mod.rs in folder mod_org 19
3.14 Functon in a file in "src" directory 19
3.15 Test code 20

4.1 Ownership ends with scope 21
4.2 Ownership ends with move 22
4.3 Ownership ends with move 22
4.4 Ownership returned from function 23
/Users/jganguly/code/rust/src/fn_04_own.rs 23
4.5 Ownership, setting reference 23
/Users/jganguly/code/rust/src/fn_04_own.rs 23
4.6 Copy trait 24
4.7 clone method 25
4.8 Struct and the Copy trait 25
4.9 Struct and the Copy trait 26
4.10 Mutable reference 26
4.11 Mutable reference restriction 26
4.12 Mutable reference restriction 27
4.13 Dangling reference 28
4.14 No dangling 28
4.15 Slice 29
4.16 String literals are slices 29
4.17 Slices of an Array 29
4.18 Get a slice 29
4.19 Lifetime 29
4.20 Lifetime 30

v



vi list of listings

5.1 struct 33
5.2 Instance of a struct 33
5.3 Mutable struct 34
5.4 Function using field init shorthand 34
5.5 struct update 34
5.6 Tuple Struct 35
5.7 Unit struct 35
5.8 Invoking unit struct function 35
5.9 Implementing a method 36
5.10 Lifetime in struct 36
5.11 Associated Function 38

6.1 Trait implementations 39
6.2 Invoking trait definitions 39
6.3 Trait implementations 40
6.4 Invoking trait definitions 40
6.5 Invoking trait definitions 41
6.6 Trait object 41
6.7 Invoking trait object 42

7.1 Enum 45
7.2 Invoking enum 45
7.3 Enum 46
7.4 Enum with context 46
7.5 Option enum 46
7.6 Option examples 47
7.7 Match example 47
7.8 Placeholder in match 47
7.9 match with Option 48
7.10 if let example 48

8.1 Vector 49
8.2 Create a vector using vec! macro 49
8.3 Length of vector 49
8.4 Push 50
8.5 Pop 50
8.6 Insert 50
8.7 Remove by index 50
8.8 Remove by value 50
8.9 Iterate 51
8.10 Insert and remove elements in a HashMap 51
8.11 Update a hashmap 52
8.12 HashSet example 52

9.1 An example of panic! 55
9.2 enum Result 56
9.3 Recoverable error 56
9.4 Example of expect 56



list of listings vii

10.1 Modules required 57
10.2 Reading from standard input 57
10.3 Command Line Arguments 57
10.4 Read from a file 58
10.5 Write to a file 58
10.6 Append to a file 58
10.7 Copy a file 59
10.8 Delete a file 59

11.1 Closure example 61
11.2 Closure example 62
11.3 Closure example 1 62
11.4 Closure example 2 62
11.5 Closure example 3 63
11.6 Cacher 64
11.7 Cacher Implementation 64
11.8 Using Cacher 65

12.1 Storing an i32 value on the heap using a box 67
12.2 Definition of List that uses Box<T> in order to have a known size 68
12.3 Using the dereference operator on a Box<i32> 69

/Users/jganguly/code/rust/src/fn_13_con.rs 72
13.1 Thread example 72
13.2 Channel example 73
13.3 Channel 74
13.4 Mutex example 75
13.5 tokio macro expansion 77
13.6 Async/Await example 77
13.7 Async/Await example 79

14.1 main.rs 81
14.2 lib.rs 82
14.3 MySQL DB CRUD operations 85
14.4 main.rs 87
14.5 models.rs 89
14.6 handlers.rs 89
14.7 errors.rs 92





Preface

Rust is an open-source, community-developed systems programming language that runs blaz-
ing fast, prevents segfaults, and guarantees thread safety. The official Rust book is excellent
but at nearly 400 pages it is rather daunting to read them in a limited available time. It can be
followed even by developers who have less exposure to programming.

The motivation to write this book came from the desire to develop a concise, and yet a com-
prehensive content, that provides a rigorous exposure to Rust. The goal is to help proficient
developers in well known languages such as Java, C#, Kotlin, Scala, Go, etc., to quickly migrate
to Rust. As such, I will not go into explanations of basic terms such as stack, heap, TCP, HTTP,
etc., and expect the reader to be familar with them or read them from other books.

For developers proficient in some other language, this book will help them migrate to Rust in
just a couple of days. The examples used in the book can be found in github at:
https://github.com/jganguly/rustfun

The ability to write maintainable and correct code is the desire of all developers. My learn-
ings has been shaped through decades of developing large and complex software at Oracle,
Microsoft, Amazon and compass.com. Most of the software that I have contributed to are in
C/C++, Java, Scala, Kotlin, Python, Go and earlier LISP at MIT. With the advent of Rust 2018
edition, I have moved to Rust completely.

Rust has some fundamental differences with other languages and it is important to understand
its ownership model thoroughly to understand the concept of borrow chekers and lifetimes.
Rust’s closure is somewhat hard. Since there is an intimate relationship between threads and
closures, it is important to master these so as to be able to write concurrent programs fearlessly.

I would like the express my sincere thanks to Himanshi Nagpal and Kiran Akadas for their
meticulous review of the book and help make the corrections. I would also like to thank
Nabarun Mondal for convincing me to move from Go to Rust and for his help with LaTex
formatting.

About the author - Jaideep Ganguly received his degrees of Doctor of Science and Master
of Science from the Massachusetts Institute of Technology. He received his undergraduate
degree from the Indian Institute of Technology, Kharagpur. He is Vice President and Head of
Compass India R&D Center, and earlier held software engineering director level positions at
Amazon and Microsoft.

ix

https://github.com/jganguly/rustfun
https://compass.com




Revision History

Revision Date Author(s) Description

1.0.1 Sep 03, 2020 Himanshi Nagpal Listing ?? added.
1.1.0 Sep 04, 2020 Jaideep Ganguly Added section on Async/Wait in Concur-

rency.
1.1.2 Sep 05, 2020 Jaideep Ganguly Examples on closure added.
1.2.0 Sep 05, 2020 Jaideep Ganguly Chapter with applications added.
1.2.1 Sep 05, 2020 Himanshi Nagpal Corrected multiple typos in chapter 4.
1.2.2 Sep 07, 2020 Himanshi Nagpal Corrected multiple typos in chapter 5.
1.2.3 Sep 09, 2020 Himanshi Nagpal Listing 7.8 corrected
1.2.4 Sep 09, 2020 Himanshi Nagpal Typos and errors corrected in Chapter 11
1.2.5 Sep 14, 2020 Kiran Akadas Various typos and errors corrected

througout the book
1.3.0 Sep 22, 2020 Jaideep Ganguly Section on Macros added in Chapter 3
1.3.1 Oct 8, 2020 Jaideep Ganguly Actix-web with Diesel example added in

Chapter 14

1





chapter 1

WHY RUST?

The Rust programming language has been Stack Overflow’s most loved language for five years
in a row, clearly establishing the fact that a significant section of the developer population
love it. Rust solves many pain points present in current popular languages and has a limited
number of downsides.

It’s quite difficult to write secure code for large programs. It’s particularly difficult to manage
memory correctly in C and C++. As a result we see a regular procession of security breaches
starting from the Morris worm of 1988. Furthermore, It’s even more difficult to write multi
threaded code, which is the only way to exploit the abilities of modern multi CPU machines.
Concurrency can introduce broad new classes of bugs and make ordinary bugs much harder
to reproduce.

Rust has been designed to be a safe, concurrent language and yet match or better the per-
formance of C/C++. Rust is not really an object-oriented language, although it has some
characteristics of it. It is also not a functional language, but does adhere to the many tenets of
functional programming.

1.1 STATICALLY TYPED

Rust is a statically and strongly typed systems programming language. Statically means that
all types are known at compile-time, strongly means that these types are designed to make it
harder to write incorrect programs. A successful compilation means you have a much better
guarantee of correctness than with language such as C or Java, generating the best possible
machine code with full control of memory use.

The debate between dynamic versus static typed is long standing and will continue. However,
dealing with dynamic typing in large code bases is difficult. Statically typed languages allow
the compiler to check for constraints on the data and its behavior and thereby significantly
reduce cognitive overheads on the developer to produce correct code. Statically typed lan-
guages differ from each other. An important aspect is how they deal with the concept of
NULL, which means the value may be something or nothing. Like Haskell and some other
modern programming languages, Rust encodes this possibility using an optional type and the
compiler requires you to handle the None case.

1.2 TYPE SAFETY

The basis for computers and computer programs is the Von Neumann model which is over
seventy years old. This architecture has one memory that holds both the instructions as well
as program data. The commonly used programming languages C and C++ offer no support

3



4 chapter 1. why rust?

for automatic memory management. The programmer has to deal with memory management
making the program error prone. A common source of error is the well known buffer overflow.
Buffer overruns are the cause of many computer problems, such as crashing and vulnerability,
in terms of attacks. The past years have revealed multiple exploits: vulnerabilities that are the
result of these types of errors and which could have significant consequences.

Recently, a serious vulnerability known asHeartbleedwas discovered. The bug was inOpenSSL
which is commonly used in network routers and web servers. This vulnerability allowed en-
cryption keys to be read remotely from these systems and thereby compromised their security.
This vulnerability would have been avoided Rust was used to develop OpenSSL.

Rust is safe by default. All memory accesses are checked and it is not possible to corrupt
memory by accident. With direct access to hardware and memory, Rust is an ideal language
for embedded and bare-metal development. One can write extremely low-level code, such as
operating system kernels or micro-controller applications. However, it is also a very pleasant
language to write application code as well. Rust’s core types and functions as well as reusable
library code stand out, especially challenging environments. However, unlike many existing
systems programming languages, Rust does not require developers to spend their time mired
in nitty-gritty details.

Rust’s strong type system and emphasis on memory safety, all enforced at compile time, mean
that it is extremely common to get errors when compiling your code. This can be a frustrating
feeling for programmers not used to such an opinionated programming language. However,
Rust developers have spent a large amount of time working to improve the error messages to
ensure that they are clear and actionable. One must not gloss over Rust compile time error
messages.

In summary, if a program has beenwritten so that no possible execution can exhibit undefined
behavior, we say that program is well defined. If a language’s safety checks ensure that every
program is well defined, we say that language is type safe.

1.3 RUNTIME

Rust strives to have as many zero-cost abstractions as possible, abstractions that are as equally
performant as corresponding hand-written code. Zero-cost abstraction means that there’s no
extra runtime overhead that you pay for certain powerful abstractions or safety features that
you do have to pay a runtime cost for other languages. However, be aware that not every
abstraction or every safety feature in Rust is truly zero-cost.

A programming language runtime, is all the machinery provided by the language itself and
which is injected into and supports the execution environment. This can include things as
small as some minimal routines for laying out and freeing memory, as in C, to entire virtual
machines, interpreters, and standard libraries, as in Java, Python or Ruby. Think of it as
the minimal machinery that is both part of the language and must be present, either in the
executable itself or installed on the computer, for any given program written in that language
to run.

Rust strives to have a very fast run time. It does this in part by compiling to an executable and
injecting only a very minimal language runtime and does not provide a memory manager, i.e., a



1.4. performance 5

garbage collector that operates during the executable’s runtime.

1.4 PERFORMANCE

Rust gives you the choice of storing data on the stack or on the heap and determines at compile
time when memory is no longer needed and can be cleaned up. This allows efficient usage of
memory as well as more performant memory access. Tilde, an early production user of Rust in
their Skylight product, found they were able to reduce their memory usage from 5GB to 50MB
by rewriting certain Java HTTP endpoints in idiomatic Rust. Savings like this quickly add
up when cloud service providers charge premium prices for increased memory or additional
machines.

Without the need to have a garbage collector continuously running, Rust projects are well-
suited to be used as libraries by other programming languages via foreign-function interfaces.
This allows existing projects to replace performance critical pieces with speedy Rust code
without the memory safety risks inherent with other systems programming languages. Some
projects are being incrementally rewritten in Rust using these techniques.

The fundamental principles of Rust are:

1. ownership and safe borrowing of data
2. functions, methods and closures to operate on data
3. tuples, structs and enums to aggregate data
4. matching pattern to select and destructure data
5. traits to define behavior on data





chapter 2

GETTING STARTED

2.1 INSTALLATION

In MacOS or Linux, Rust is installed using the following command in the terminal.

1 # install rust
2 curl −−proto ’=https’ −−tlsv1.2 https://sh.rustup.rs −sSf | sh
3
4 # update rust
5 rustup update
6
7 # uninstall rust
8 rustup self uninstall
9
10 # rust compiler
11 rustc −−version

Listing 2.1: Installation in MacOS or Linux

2.2 CREATING PROJECT WITH CARGO

Cargo is Rust’s build system and package manager. Cargo provides automations for your
Rust package, i.e., building your package including retrieving "dependencies". For simple
projects, you can use the rustc compiler but for complex projects you have to use Cargo .
It is used to manage Rust projects because Cargo handles a lot of tasks such as building the
code, downloading the libraries the code depends on and building those libraries. Cargo
comes installed with Rust and you can check whether it is installed by typing the following in
a terminal.

1 cargo −−version

Listing 2.2: Cargo

Let us create a directorymy_rust_project to store the Rust code in your home directory.

1 cargo new my_rust_project
2 cd my_rust_project

Listing 2.3: Project with Cargo

The first command creates a new directory called my_rust_project in your home directory.
We’ve named our project my_rust_project, and Cargo creates its files in a directory of the

7



8 chapter 2. getting started

same name. Go into the my_rust_project directory and list the files. You’ll see that Cargo
has generated two files and one directory for us: a Cargo.toml file and a src directory with a
main.rs file inside.

It has also initialized a new Git repository along with a .gitignore file. Git files won’t be
generated if you run cargo newwithin an existingGit repository; you can override this behavior
by using cargo new --vcs=git .

The contents of Cargo.toml look as follows:

1 [package]
2 name = "tpl"

3 version = "0.1.0"

4 authors = ["Jaideep Ganguly <ganguly.jaideep@gmail.com>"]
5 edition = "2018"

6
7 # See more keys and their definitions at

↪→ https://doc.rust−lang.org/cargo/reference/manifest.html
8
9 [dependencies]
10 rand = "0.5.5"

Listing 2.4: Project with Cargo

This file is as per the TOML (Tom’s Obvious, Minimal Language) format, which is Cargo’s
configuration format. The first line, [package] , is a section heading that indicates that
the following statements are configuring a package. The next four lines set the configuration
information Cargo needs to compile your program: the name, the version, who wrote it, and
the edition of Rust to use. The last line, [dependencies] , is the start of a section for you
to list any of your project’s dependencies. Packages of code are referred to as crates. For
example, in listing 2.4, there is a dependency on the external crate rand . In the code, there
needs to be a declaration to access the contents of the rand crate.

The file src/main.rs has been generated by Cargo.

1
2 use rand::Rng;
3
4 fn main() {
5 // we will understand the let keyword and the :: syntax later
6 let number = rand::thread_rng().gen_range(1, 101);
7 println!("Hello World {}", number);
8 }

Listing 2.5: Hello World!

Rust files end with the .rs extension and fn is the keyword to denote a function. Cargo
placed the code in the src directory and we have a Cargo.toml configuration file in the top
directory. Cargo expects your source files to live inside the src directory. The top level
project directory is just for README files, license information, configuration files, etc. Using
Cargo helps you organize your projects.



2.3. build & run with cargo 9

In listing 2.5, println! is used to print results to the screen. It calls a Rust macro. If it called
a function instead, it would be entered as println (without the !). The set of curly brackets, {} ,
is a placeholder. Using a ! means that a macro is being called instead of a normal function.

A logical group of code is called a Module. Modules are similar to namespaces in other
programming languages. For example, the network module contains networking related
functions. Multiple modules are compiled into a unit called crate . Rust programs may
contain a binary crate or a library crate. A binary crate is an executable project that has
a main() method. A library crate is a group of components that can be reused in other
projects. Unlike a binary crate, a library crate does not have an entry point main() method.

2.3 BUILD & RUNWITH CARGO

To build and run, you need to cd to my_rust_project .

1 cargo build # build only
2 cargo run # build and run

Listing 2.6: Build & Run

cargo build command creates an executable file in target/debug/tpl . We can run it
with ./target/debug/hello_world . Running cargo build for the first time also causes
Cargo to create a new file at the top level Cargo.lock. This file keeps track of the exact versions
of dependencies in your project. We can also use cargo run to compile the code and then
run the resulting executable all in one command. Cargo also provides a command called
cargo check . that checks your code to make sure it compiles but doesn’t produce an
executable. Cargo check is much faster than cargo build, because it skips the step of producing
an executable. If you’re continually checking your work while writing the code, using cargo
check will speed up the process. When your project is finally ready for release, you can use
cargo build --release to compile it with optimizations. This command will create an
executable in target/release instead of target/debug. The optimizations make your Rust code
run faster, but turning them on lengthens the time it takes for your program to compile.

2.4 CREATING A LIBRARYWITH CARGO

Cargo is used to create a library named my_rust_lib using the command:
cargo new --lib my_rust_lib to create the library my_rust_lib .

2.5 PUBLISHING ON CRATES.IO

Third-party crates can be downloaded using Cargo from crates.io . You can also publish
to crates.io for which you’ll need an account on crates.io to acquire an API token.
To do so, visit the home page of crates.io and log in via a GitHub account. Next run
the command cargo login Your-API-Token . Your API token will now be stored in
~/.cargo/credentials.toml .



10 chapter 2. getting started

Take care when publishing a crate, because a publish is permanent. The version can never be
overwritten, and the code cannot be deleted. There is no limit to the number of versions which
can be published. You can check which files are included with the following command.

1 cargo package −−list

and then publish.

1 cargo publish



chapter 3

BASIC CONCEPTS

In this chapter, we will discuss basic concepts in programming in the context of Rust. These
include variables, basic types, functions, comments, control flow and how to organize code
which are part of every Rust program.

3.1 VARIABLES &MUTABILITY

In Rust, variables are immutable by default. This restriction contributes safety and easy
concurrency that Rust offers. You have the option to make your variables mutable. While
Rust encourages you to favor immutability but sometimes you may have to opt out. In Rust,
variables are assigned using the let keyword and mut makes them mutable.

Constants are declared using the const keyword instead of the let keyword and the type
of the value must be annotated. We will discuss type shortly. Constants are immutable and
are evaluated at compile time. This means that they can be set only to a constant expression
but not to the result of a function call or any other value that will be computed at runtime.

Constants can be declared in any scope, including the global scope, which makes them useful
for values that many parts of code need to know about. Naming hard coded values used
throughout your program as constants is useful in conveying some semantic sense of that
value to future maintainers of the code.

In contrast, a let binding is about a run-time computed value.

Example code, throughout this book, are written in separate functions and invoked through
the main function as shown below. In subsequent examples, the main function will not be
stated explicitly, unless it is essential to understanding, as it simply involves calling the specific
functions.

1 mod basic;
2 fn main() {
3 basic::concept();
4 }

Listing 3.1: main.rs for functions explaining basic concepts

2 pub fn concept() {
3 let x = 5;
4 let mut y = 6;
5 y = y + 1;
6 const MAX_POINTS: u32 = 100_000*100;
7 println!("x={} y={} MAX_POINTS={}",x,y,MAX_POINTS);

11



12 chapter 3. basic concepts

8 }

Listing 3.2: Variables & Mutability

Output:

1 x=5 y=7 MAX_POINTS=10000000

3.2 SHADOWING

One can declare a new variable with the same name as a previous variable, and the new
variable shadows the previous variable. Shadowing is different from marking a variable as
mut , because wewill get a compile-time error if we accidentally try to reassign to this variable
without using the let keyword. By using let , we can perform a few transformations on a
value but the variable will be immutable after those transformations have been completed.

The other difference between mut and shadowing is that because we’re effectively creating
a new variable when we use the let keyword again, we can change the type of the value but
reuse the same name.

12 pub fn shadow() {
13 let x = 5;
14 let x = x + 1;
15 let x = x * 2;
16
17 let spaces = " ";
18 let spaces = spaces.len();
19
20 println!("{} {}", x,spaces);
21 }

Listing 3.3: Shadowing

Output:

1 12 3

3.3 DATA TYPES

Every value in Rust is of a certain data type. There are two data type subsets - scalar and
compound. Rust is a statically typed language, which means that the types of all variables must
be declared at compile time. The compiler can usually infer what type we want to use based
on the value and usage. But in cases when many types are possible, such as when we convert
a String to a numeric type using parse , we must add a type annotation as below:

1 let input: i32 = input.trim().parse().expect("Not a number);

Listing 3.4: Type Annotation



3.4. scalar data type 13

Length Signed Unsigned
8-bit i8 u8
16-bit i16 u16
32-bit i32 u 32
64-bit i64 u64
128-bit i128 u128
arch isize usize

Table 3.1: Integer Types in Rust

Number Literals Example
Decimal 98_222
Hex 0xff
Octal 0o77
Binary 0b1111_0000

Byte (u8 only) b’A’

Table 3.2: Integer Literals in Rust

In this case input is read from the console and the type is unknown and so we will have to
annotate the type by specifying i32 .

Note that .expect("Not a number!") is necessary as otherwise the codewill not compile.
We will discuss this later. In the above code, i32 , i.e, a 32 bit integer, is the type of num .

3.4 SCALAR DATA TYPE

A scalar data type represents a single value. Rust has four primary scalar data types: integers,
floating point numbers, booleans, characters.

3.4.1 INTEGER TYPE

An integer is a number without a fractional component.

The isize and usize types depend on the computer the program is being executed; 64
bits if you are on a 64-bit architecture and 32 bits if you are on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table 3.2. A literal is a notation for
representing a fixed value. Note that all number literals except the byte literal allow a type
suffix, such as 57u8, and _ as a visual separator, such as 1_000 for ease of reading.

Rust’s defaults are generally good choices, and integer types default to i32. This type is
generally the fastest, even on 64-bit systems. The primary situation in which you would use
isize or usize is when indexing some sort of collection.

Let’s say you have a variable of type u8 that can hold values between 0 and 255. If you try to
change the variable to a value outside of that range, such as 256, integer overflow will occur.
Rust has some interesting rules involving this behavior. When you are compiling in debug
mode, Rust includes checks for integer overflow that cause your program to panic at runtime



14 chapter 3. basic concepts

if this behavior occurs. Rust uses the term panic when a program exits with an error. It is
actually a macro panic! .

When you are compiling in release mode with the --release flag, Rust does not include
checks for integer overflow that cause panics. Instead, if overflow occurs, Rust performs two’s
complement wrapping. 2’s complement of a binary number is 1 added to the 1’s complement
of the binary number. And 1’s complement of a binary number is another binary number
obtained by toggling all bits in it, i.e., transforming the 0 bit to 1 and the 1 bit to 0.

3.4.2 FLOATING-POINT TYPE

Rust also has two primitive types for floating-point numbers, which are numbers with decimal
points. Rust’s floating-point types are f32 and f64 , which are 32 bits and 64 bits in size,
respectively. The default type is f64 because on modern CPUs it is roughly the same speed
as f32 but is capable of more precision.

3.4.3 BOOLEAN TYPE

As in most other programming languages, a Boolean type in Rust has two possible values:
true and false . Booleans are one byte in size. The Boolean type in Rust is specified using
bool .

3.4.4 CHARACTER TYPE

Rust’s char type is the language’smost primitive alphabetic type. char literals are specified
with single quotes, as opposed to string literals, which use double quotes. Rust’s char type
is four bytes in size and represents a Unicode Scalar Value, which means it can represent a lot
more than just ASCII. Accented letters; Chinese, Japanese, and Korean characters; emoji; and
zero-width spaces are all valid char values in Rust.

25 pub fn data_types() {
26 let x = 3; // Type inference will assign x to be of type i32
27 let num: i32 = "142".parse().expect("Not a number!");
28 let y: f64 = 300.43;
29 let c = ’A’;
30 let s = "hello";
31 let t = true;
32
33 println!("{} {} {} {} {} {}", x, num, y, c, s, t);
34 }

Listing 3.5: Data types

Output:

1 3 142 300.43 A hello true



3.5. compound data type 15

3.5 COMPOUND DATA TYPE

Compound types can group multiple values into one type. Rust has two primitive compound
types - tuples and arrays.

3.5.1 TUPLE

A tuple is a general way of grouping together a number of values with a variety of types into
one compound type. Tuples have a fixed length - once declared, they cannot grow or shrink
in size. The variable tup binds to the entire tuple, because a tuple is considered a single
compound element. To access the individual values in a tuple, we can use pattern matching
to destructure a tuple value. The _ is a placeholder, as the variable is not required.

38 pub fn tuple_example() {
39 let tup: (i32, f64, u8) = (500, 6.4, 1);
40 let (_, y, _) = tup;
41 println!("The value of y is: {}", y);
42 }

Listing 3.6: Data types

Output:

1 The value of y is: 6.4

3.5.2 ARRAY

Another way to have a collection of multiple values is with an array. Unlike a tuple, every
element of an array must have the same type. Arrays in Rust are different from arrays in some
other languages because arrays in Rust have a fixed length, like tuples.

46 pub fn array_example() {
47 let a = [1, 2, 3, 4, 5];
48 let b = [3; 5]; // 5 is the size of the array
49 let c: [i32; 5] = [1,2,3,4,5]; // type is stated with semicolon
50 println!("a={:?}\nb={:?}\nc={:?}", a,b,c);
51 }

Listing 3.7: Data types

Output:

1 a=[1, 2, 3, 4, 5]
2 b=[3, 3, 3, 3, 3]
3 c=[1, 2, 3, 4, 5]

After the semicolon, the number 5 indicates the array contains five elements. Variable b will
contain [3, 3, 3, 3, 3]; In variable c, i32 is the type of each element. If you try to
access an element of an array that is past the end of the array, the program will compile but
Rust will panic and cause a runtime error. This is the first example of Rust’s safety principles in



16 chapter 3. basic concepts

action. In many low-level languages, this kind of check is not done, and when you provide an
incorrect index, invalid memory can be accessed. Rust protects you against this kind of error
by immediately exiting instead of allowing the memory access and continuing.

{...} surrounds all formattingdirectives. : separates thenameor ordinal of the thingbeing
formatted (which in this case is omitted, and thus means "the next thing") from the formatting
options. The ? is a formatting option that triggers the use of the std::fmt::Debug
implementation of the thing being formatted, as opposed to the default Display trait (we will
discuss trait in a later chapter), or one of the other traits (like UpperHex or Octal). Thus, {:?}
formats the "next" value passed to a formattingmacro, and supports anything that implements
Debug.

3.6 FUNCTIONS

Functions are defined with the fn keyword. Below is an example of a typical function.

55 pub fn function_example(a: i32, b:i32) −> i32 {
56 let c = a + b;
57 c
58 }

Listing 3.8: Data types

In function signatures, you must declare the type of each parameter as well as the return type.
Function bodies are made up of a series of statements optionally ending in an expression.
Statements are instructions that perform some action and do not return a value. Expressions
evaluate to a resulting value. In Rust, the return value of the function is synonymous with the
value of the final expression in the block of the body of a function. You can return early from
a function by using the return keyword and specifying a value, but most functions return the
last expression implicitly.

In Rust, the idiomatic comment style starts a comment with two slashes, and the comment
continues until the end of the line. For comments that extend beyond a single line, you will
need to include // on each line. Alternately, you can use block comments using the familiar
/* */ style.

3.7 CONTROL FLOW

Control flow is achieved through if(condition) else if(condition) else state-
ments. The condition must evaluate to true or false as in other common languages.

62 pub fn ctrlflow_example() {
63 let a = 12;
64
65 if a < 10 {
66 println!("low number");
67 }
68 else if (a > 10) && (a < 20) {
69 println!("moderate number");



3.8. loops 17

70 }
71 else {
72 println!("high number");
73 }
74 }

Listing 3.9: Control Flow

Rust has the match keyword which is similar to switch in other languages. We will study
that in the context of enum .

3.8 LOOPS

Loops are achieved with for , iter , loop key words. Following are some examples.

78 pub fn loop_example() {
79 let arr = [10, 20, 30, 40, 50];
80
81 for elem in arr.iter() {
82 println!("Element is: {}", elem);
83 }
84
85 let mut i = 0;
86 loop {
87 println!("{} {}", i, arr[i]);
88 i = i + 1;
89 if (i == arr.len()) {
90 break;
91 }
92 }
93 }

Listing 3.10: Loops

Output:

1 Element is: 10
2 Element is: 20
3 Element is: 30
4 Element is: 40
5 Element is: 50
6 0 10
7 1 20
8 2 30
9 3 40
10 4 50



18 chapter 3. basic concepts

3.9 GENERICS

To eliminate duplication of code, we sometimes need to resort to what is referred to as generic
programming, a style of programming in which algorithms are written in terms of types that
are specified later. These are instantiated later when specific types are provided as parameters.
Rust supports generics.

The <T> syntax known as the type parameter, is used to declare a generic construct. T
represents any data-type.

1 struct Data<T> {
2 value:T,
3 }
4
5 fn main() {
6 //generic type of i32
7 let t:Data<i32> = Data{value:350};
8 println!("value is :{} ",t.value);
9
10 //generic type of String
11 let t2:Data<String> = Data{value:"Tom".to_string()};
12 println!("value is :{} ",t2.value);
13 }

Listing 3.11: Generic example

3.10 MACROS

An awesome and powerful feature of Rust is its ability to use and create macros. Macros are
created using macro_rules! . Macros simply allows you to invent your own syntax and
write code that writes more code. This is called metaprogramming, which allows for syntactic
sugars that make your code shorter and make it easier to use your libraries. You could even
create your own DSL (Domain-Specific Language) within rust. Below is an example.

1 macro_rules! hi {
2 ($name : expr) => {
3 println!("Hi {:?}", $name);
4 };
5 }

Many of the macros can take multiple inputs. For example:

1 macro_rules! map {
2 ( $($key : expr => $value : expr), * ) => {{
3 let mut hm = HashMap::new();
4 $( hm.insert($key,$value); )*
5 hm
6 }};
7 }



3.11. modules 19

1 use std::collections::HashMap;
2 let person = map! (
3 "name" => "Tim",
4 "gender" => "male"
5 );
6 println!("{:?}", person);

1 {"name": "Tim", "gender": "male"}

Some of the common macros in Rust are println! and vec! are macros .

3.11 MODULES

To keep the codemanageable, youwill need to organize the code in separate files or directories.
Following is an example of how to achieve that with mod and use keywords.

1 // mod_org is the name of the folder; it has a file named mod.rs
2 mod mod_org;
3 // mod_example.rs file is in "src" directory; contains mod named

↪→ mod_test
4 mod mod_example;
5 use mod_example::mod_test;
6
7 fn main() {
8 // mod example; organize code into modules
9 mod_org::f1();
10 mod_example::mod_test::f2();
11 }

Listing 3.12: Using mod

2 // pub key word is required or else
3 // f1 is private and not accessible outside the mod without pub keyword
4 pub fn f1() {
5 println!("printing from mod_org::f1");
6 }

Listing 3.13: Function defined in mod.rs in folder mod_org

We could also define modules, including nested modules, in a separate source file as below.

2 pub mod mod_test {
3 pub fn f2() {
4 println!("printing from mod_test::f2");
5 }
6 }

Listing 3.14: Functon in a file in "src" directory



20 chapter 3. basic concepts

3.12 RUNNING TESTS

We often hear about languages with strict compilers, such as Haskell and Rust that "if the code
compiles, it works." But this saying is not universally true. A project may compile but may not
do anything. While building a complete project, we will need to write unit tests to check that
the code compiles and has the behavior we want.

1 #[cfg(test)] // Code is not compiled unless running cargo test
2 mod my_tests {
3 #[test]
4 fn basic_test() {
5 assert_eq!(2==2, true);
6 }
7 }

Listing 3.15: Test code

Output:

1 Finished test [unoptimized + debuginfo] target(s) in 0.35s
2 Running target/debug/deps/rust−12e404aeef2cf895
3
4 running 1 test
5 test my_tests::basic_test ... ok
6
7 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered

↪→ out

Tests are run simply by running cargo test .

3.13 DOCUMENTATION

Rust has the tool rustdoc to generate rust documentation. Comments with /// will be
picked up in the documentation generated. Documentation is generated as follows:

1 rustdoc src/somefile.rs
2 cargo doc −−open

rustdoc will generate Rust documentation only for public entities.



chapter 4

OWNERSHIP, BORROWING,
REFERENCING & LIFETIME

Rust, as we stated earlier, is a type safe language, i.e., the compiler ensures that every program
haswell-defined behavior. Rust is able to do sowithout a garbage collector, runtime, ormanual
memory management. This is possible through Rust’s concept of ownership, This is Rust’s
most unique feature and it enables Rust to make memory safety guarantees without needing a
garbage collector. It is important to understand how ownership works in Rust as without that
you will not be able to compile the code. Rust ownership rules can be stated as follows:

n Each value in Rust has a variable that is called its owner.
n There can only be one owner at any point of time.
n When the owner goes out of scope, the value will be dropped.

4.1 OWNERSHIP

Ownership begins with assignment and ends with scope. When a variable goes out of scope,
its associated value, if any, is dropped. A dropped value can never be used again because the
resources it uses are immediately freed. However, a value can be dropped before the end of a
scope if the compiler determines that the owner is no longer used within the scope.

2 pub fn scope() {
3 {
4 let x = 1;
5 println!("x: {}", x);
6 }
7
8 // println!("x: {}", x); // ERROR
9 }

Listing 4.1: Ownership ends with scope

Compile Error:

1 error[E0425]: cannot find value ’x’ in this scope
2 −−> src/fn_04_own.rs:7:23
3 |
4 7 | println!("x: {}", x); // ERROR
5 | ^ not found in this scope

While most languages would not allow you to use x outside of its local scope, in Rust, when
the anonymous scope ends, the value owned by x , which is 1, is dropped.

21



22 chapter 4. ownership, borrowing, referencing & lifetime

4.2 REASSIGNMENT

Reassignment of ownership (as in let b = a) is known as a move. A move causes the
former assignee to become uninitialized and therefore not usable in the future.

13 pub fn reassignfail() {
14 let a = vec![1, 2, 3]; // a growable array literal
15 let b = a; // a can no longer be used beyond this line
16 println!("b: {:?}", b);
17 // println!("a: {:?}", a); // ERROR
18 }

Listing 4.2: Ownership ends with move

Compile Error:

1 error[E0382]: borrow of moved value: ’a’
2 −−> src/fn_04_own.rs:14:22
3 |
4 11 | let a = vec![1, 2, 3]; // a growable array literal
5 | − move occurs because ’a’ has type ’std::vec::Vec<i32>’,
6 which does not implement the ’Copy’ trait
7 12 | let b = a; // a can no longer be used
8 | − value moved here
9 13 | println!("a: {:?}", b);
10 14 | println!("a: {:?}", a); // ERROR
11 | ^ value borrowed here after move

Similarly, consider the following code. If wewere to use v after thismove, the compiler would
complain:

22 pub fn reassignfailure() {
23 let v = vec![1,2,3];
24 let s = sum(v);
25 // println!("sum of {:?}: {}", v, s); // ERROR
26 }
27
28 fn sum(vector: Vec<i32>) −> i32 {
29 let mut sum = 0;
30
31 for item in vector {
32 sum = sum + item;
33 }
34 sum
35 }

Listing 4.3: Ownership ends with move

Compile error:



4.2. reassignment 23

1 error[E0382]: borrow of moved value: ’v’
2 −−> src/fn_04_own.rs:20:30
3 |
4 18 | let v = vec![1,2,3];
5 | − move occurs because ’v’ has type ’std::vec::Vec<i32>’,
6 which does not implement the ’Copy’ trait
7 19 | let s = sum(v);
8 | − value moved here
9 20 | println!("sum of {:?}: {}", v, s); // ERROR
10 | ^ value borrowed here after move

Another form of reassignment occurs while returning a value from a function. But this will
work as functions no longer have ownership of the returned values once its scope ends.

39 pub fn inc_vec(x: i32) −> Vec<i32> {
40 let result = vec![x, x+1, x+2, x+3, x+4]; // allocated on heap
41 result
42 }

Listing 4.4: Ownership returned from function

Invoking:

1 let x = fn_04_own::example4(10);
2 println!("series: {:?}",x);

Output:

1 series: [10, 11, 12, 13, 14]

Let us review some examples with references.

46 pub fn setref(x: &mut i32){
47 *x = *x + 1; // ’*’ is dereference operator to get value (like C)
48 }

Invoking:

1 let x = 10;
2 let y = fn_04_own::setref(&mut x);
3 println!("{:?}", y);

Listing 4.5: Ownership, setting reference

Output:

1 11

52 pub fn getref(x: &mut i32) −> i32 {
53 println!("Inside function {}",x);
54 *x + 1
55 }



24 chapter 4. ownership, borrowing, referencing & lifetime

Invoking:

1 let y = fn_04_own::getref(&mut x);
2 println!("{:?}", y);

Output:

1 Inside function 11
2 12

The macros print! , println! , and format! are special cases and implicitly take a
reference to any arguments to be formatted. These macros do not behave as normal functions
for reasons of convenience, the fact that they take references silently is part of that difference.
So, println!("{}n",x); produces the same output as println!("{}n",&x);

During reassignment, for variables in the stack, instead of moving the values owned by the
variables, their values are copied. While the code in listing 4.2 did not work, the following
code will work correctly.

66 pub fn copy_trait_example() {
67 let a = 42;
68 let b = 94;
69 let c = a + b;
70 println!("The sum of {} and {} is {}", a, b, c); // NO ERROR
71 }

Listing 4.6: Copy trait

Invoking:

1 fn_04_own::copy_trait_example();

Output:

1 The sum of 42 and 94 is 136

A copy creates an exact duplicate of a value that implements the Copy trait. We will study
Struct and Trait in a later chapter. The examplewith Vec<i32> fails to compile because
Vec<i32> does not implement the Copy trait. The reason is that types such as integers
have a known size at compile time and are stored on the stack and so it is quick to make copies
of the values. In other words, there is no difference between deep and shallow copying here,
so calling clone wouldn’t do anything different from the usual shallow copying and we can
leave it out.

Rust has a special annotation called the Copy trait that we can place on types like integers
that are stored on the stack. If a type has the Copy trait, an older variable is still usable after
assignment. Rust will not let us annotate a type with the Copy trait if the type, or any of
its parts, has implemented the Drop trait. If the type needs something special to happen
when the value goes out of scope and we add the Copy annotation to that type, we will get a
compile-time error.

As a general rule, any group of simple scalar values can be Copy, and nothing that requires
allocation or is some form of resource is Copy.



4.3. clone 25

Examples are: u32, i64, book, f64, char, (i32, f64)
but a tuple (i32,String) is not.

Rust will never automatically create "deep" copies of your data. Therefore, any automatic
copying can be assumed to be inexpensive in terms of runtime performance.

4.3 CLONE

If we do want to deep copy the heap data of the String, not just the stack data, we can use a
common method called clone . For example:

1 let s1 = String::from("hello");
2 let s2 = s1.clone();
3
4 println!("s1 = {}, s2 = {}", s1, s2);

Listing 4.7: clone method

Structs do not implement Copy by default. Reassignment of a struct variable leads to a
move, not a copy. However, it is possible to automatically derive the Copy and Clone trait
as follows.

75 pub fn struct_copy_example() {
76
77 #[derive(Debug,Clone,Copy)]
78 struct Person {
79 age: i8
80 }
81
82 let alice = Person { age: 42 };
83 let bob = alice;
84
85 println!("alice: {:?}\nbob: {:?}", alice, bob);
86 }

Listing 4.8: Struct and the Copy trait

Output:

1 alice: Person { age: 42 }
2 bob: Person { age: 42 }

4.4 REFERENCING OR BORROWING

Many resources are too expensive in terms of time ormemory be copied for every reassignment.
In these cases, Rust offers the option to borrow. To do so, we precede the assignee variable with
the ampersand & character. Non-copyable value can be passed as an argument to a function
if it is borrowed.



26 chapter 4. ownership, borrowing, referencing & lifetime

90 pub fn ref_example() {
91 let s = String::from("hello");
92 let len = calculate_length(&s);
93 println!("The length of ’{}’ is {}.", s, len); // no error
94 }

Listing 4.9: Struct and the Copy trait

Invoking the function will result in:

Output:

1 The length of ’hello’ is 5.

The ampersands are references, they allow you to refer to some value without taking owner-
ship of it. Note that the reference in the above example is passed by value.

4.5 MUTABLE REFERENCE

If it is necessary to mutate a reference, you will need to annotate the type with mut in the
caller function and with &mut in the function arguments.

104 pub fn mut_ref_example() {
105 let mut s = String::from("Hello");
106 change(&mut s);
107 println!("{}",s);
108 }

Listing 4.10: Mutable reference

Output:

1 Hello world!

But mutable references have one big restriction. You can have only one mutable reference to
a particular piece of data in a particular scope.

117 pub fn mut_ref_restrict() {
118 let mut s = String::from("hello");
119
120 let r1 = &mut s;
121 let r2 = &mut s;
122
123 // ERROR: will not compile
124 // cannot borrow ’s’ as mutable more than once at a time
125 println!("{}, {}", r1, r2);
126 }

Listing 4.11: Mutable reference restriction

Compile error:



4.5. mutable reference 27

1 error[E0499]: cannot borrow ’s’ as mutable more than once at a time
2 −−> src/fn_04_own.rs:88:14
3 |
4 98 | let r1 = &mut s;
5 | −−−−−− first mutable borrow occurs here
6 99 | let r2 = &mut s;
7 | ^^^^^^ second mutable borrow occurs here

We also cannot have a mutable reference while we have an immutable one.

130 pub fn mut_ref_restrict2() {
131 let mut s = String::from("hello");
132
133 // ERROR: will not compile
134 // cannot borrow ’s’ as mutable because it is also borrowed as

↪→ immutable.
135 let r1 = &s; // no problem
136 let r2 = &mut s; // problem
137
138 println!("{}, {}", r1, r2);
139 }

Listing 4.12: Mutable reference restriction

Compile error:

1 error[E0502]: cannot borrow ’s’ as mutable because it is also borrowed
↪→ as immutable

2 −−> src/fn_04_own.rs:101:14
3 |
4 111 | let r1 = &s; // no problem
5 | −− immutable borrow occurs here
6 112 | let r2 = &mut s; // problem
7 | ^^^^^^ mutable borrow occurs here

However, the following code will work because the last usage of the immutable references
occurs before the mutable reference is introduced.

1 let mut s = String::from("hello");
2
3 let r1 = &s; // no problem
4 let r2 = &s; // no problem
5 println!("{} and {}", r1, r2);
6 // r1 and r2 are no longer used after this point
7
8 let r3 = &mut s; // no problem
9 println!("{}", r3);



28 chapter 4. ownership, borrowing, referencing & lifetime

The scopes of the immutable references r1 and r2 end after the println! where they are last
used, which is before the mutable reference r3 is created. These scopes don’t overlap, so this
code is allowed.

The benefit of having these restriction is that Rust can prevent data races at compile time. A
data race is similar to a race condition and happens when these three behaviors occur:

n Two or more pointers access the same data at the same time.
n At least one of the pointers is being used to write to the data.
n There is no mechanism being used to synchronize access to the data.

Data races cause undefined behavior and can be difficult to diagnose and fix when you’re
trying to track them down at runtime. Rust prevents this problem from happening because it
won’t even compile code with data races.

4.6 DANGLING REFERENCES

The Rust compiler guarantees that references will never be dangling references. if you have a
reference to some data, the compiler will ensure that the data will not go out of scope before
the reference to the data does.

151 fn dangle() −> &String { // ERROR: will not compile
152 let s = String::from("hello");
153 &s
154 }

Listing 4.13: Dangling reference

Because s is created inside dangle, when the code of dangle is finished, s will be deallocated.
But we tried to return a reference to it. That means this reference would be pointing to an
invalid String. Rust will generate a comile time error.

The solution here is to simply return the String directly.

159 fn no_dangle() −> String {
160 let s = String::from("hello");
161 s
162 }

Listing 4.14: No dangling

4.7 SLICE TYPE

Slices let you reference a contiguous sequence of elements in a collection rather than the whole
collection. Slices do not have ownership. We can create slices using a rangewithin brackets by
specifying [starting_index..ending_index], where starting_index is the first position in the slice
and ending_index is one more than the last position in the slice. If you drop the starting_index
then it is taken as 0 and If you drop the ending_index then it is taken as the length which is
s.len in this case.



4.8. l ifetime 29

1 let s = String::from("hello world");
2 let hello = &s[0..5];
3 let world = &s[6..11];

Listing 4.15: Slice

The type that signifies string slice is written as &str . String literals are slices.

1 let s = "Hello, world!";

Listing 4.16: String literals are slices

The type of s here is &str . It is a slice pointing to that specific point of the binary. This is
also why string literals are immutable. &str is an immutable reference. Similarly, below is
another example of an array and its slice.

1 let a = [1, 2, 3, 4, 5];
2 let slice = &a[1..3];

Listing 4.17: Slices of an Array

This slice has the type &[i32] . It works the same way as string slices do, by storing a
reference to the first element and a length. You’ll use this kind of slice for all sorts of other
collections.

In the following example, the function computes a slice which does not have ownership of the
value in it.

59 pub fn getslice(s: &str) −> &str{
60 println!("The string is {}",s);
61 &s[1..3]
62 }

Listing 4.18: Get a slice

Invoking:

1 let s = fn_04_own::getslice("Hello");
2 println!("{:?}", s);

Output:

1 Inside function Hello
2 Returned slice "el"

4.8 LIFETIME

Sometimes we will want a function to return a borrowed value. Consider the following code
which will fail to compile.

167 pub fn lifetime_example(x: &str, y: &str) −> &str { // Error
168 if x.bytes().len() > y.bytes().len() {
169 x



30 chapter 4. ownership, borrowing, referencing & lifetime

170 } else {
171 y
172 }
173 }

Listing 4.19: Lifetime

Compile error:

1 error[E0106]: missing lifetime specifier
2 −−> src/fn_04_own.rs:125:46
3 |
4 136 | pub fn lifetime_example(x: &str, y: &str) −> &str { // Error
5 | −−−− −−−− ^ expected named
6 lifetime parameter

Notice that x and y are borrowed but only one of them is returned. A lifetime is the
scope within which a borrowed reference is valid. The Rust compiler is smart enough to infer
lifetimes in many cases, meaning that we don’t need to explicitly write them but sometimes,
as in this case, we do need to specify them.

Now consider the code below which compiles and runs correctly.

178 pub fn lifetime_example<’a>(x: &’a str, y: &’a str) −> &’a str {
179 if x.bytes().len() > y.bytes().len() {
180 x
181 } else {
182 y
183 }
184 }

Listing 4.20: Lifetime

Output:

1 Alice

The change allows the compiler to determine that the lifetime (valid scope) of the value
whose borrowed reference it returnsmatches the lifetime of the parameters x and y. In other
words, there is no way for the lifetime_example function to return a reference to a dropped
value.

4.8.1 STATIC

Rust has a few reserved lifetime names. One of those is ’static . You might encounter it in
two situations:

1 // A reference with ’static lifetime:
2 let s: &’static str = "hello world";

As a reference lifetime ’static indicates that the data pointed to by the reference lives for
the entire lifetime of the running program. It can still be coerced to a shorter lifetime. There



4.8. l ifetime 31

are two ways to make a variable with ’static lifetime, and both are stored in the read-only
memory of the binary.

n Make a constant with the static declaration.
n Make a string literal which has type: &’static str .





chapter 5

STRUCT

A struct is a user-defined type that we can use to store one or more variables of different types.
A struct allows us to group related code together andmodel our application after entities in the
real world. There are three types of structures (struct) that can be created using the struct
keyword:

n The classic structs as in the C language.
n Tuple structs, which are, basically, named tuples.
n Unit structs or field-less that are useful for generics.

5.1 DEFINING A STRUCT

Since struct is a custom data type that lets you name and package together multiple related
values that make up a meaningful group. Structs are similar to tuples. Like tuples, the pieces
of a struct can be different types. But unlike with tuples, you have to name each piece of data
so that it is clear what the values mean.

1 struct User {
2 username: String,
3 email: String,
4 sign_in_count: u64,
5 active: bool
6 }

Listing 5.1: struct

5.2 INSTANTIATING STRUCTS

To use a struct after we have defined it, we create an instance of that struct by specifying
concrete values for each of the fields. We create an instance by stating the name of the struct
and then add curly brackets containing key: value pairs, where the keys are the names of the
fields and the values are the data we want to store in those fields. We do not have to specify
the fields in the same order in which we declared them in the struct.

1 fn main() {
2 let mut user = User {
3 email: String::from("john@company.com"),
4 username: String::from("john"),
5 active: true,
6 login_count: 5

33



34 chapter 5. struct

7 };
8 }

Listing 5.2: Instance of a struct

To get a specific value from a struct, we can the use dot notation. If we wanted just this user’s
email address, we could use user.email wherever we wanted to use this value.

If the instance is mutable, we can change a value by using the dot notation and assigning into
a particular field.

1 user.email = String::from("doe@company.com");

Listing 5.3: Mutable struct

Note that the entire instancemust bemutable as Rust does not allow us tomark only certain
fields as mutable.

5.2.1 FIELD INIT SHORTHAND

As with any expression, we can construct a new instance of the struct as the last expression in
the function body to implicitly return that new instance.

1 fn build_user(email: String, username: String) −> User {
2 User {
3 email,
4 username,
5 active: true,
6 login_count: 1,
7 }
8 }

Listing 5.4: Function using field init shorthand

If the function parameters are same as the struct fields, the function parameter values are
mapped to the struct attribute values and this is a convenient shorthand.

5.2.2 STRUCT UPDATE

It is often useful to create a new instance of a struct that uses most of an old instance’s
values but changes some. You can do with the struct update syntax. The syntax .. specifies
that the remaining fields not explicitly set should have the same value as the fields in the given
instance.

1 let user_another = User {
2 email: String::from("mary@company.com"),
3 username: String::from("mary"),
4 ..user
5 };

Listing 5.5: struct update



5.3. tuple struct 35

5.3 TUPLE STRUCT

You can also define structs that look similar to tuples, called tuple structs. Tuple structs have
the added meaning the struct name provides but do not have names associated with their
fields; rather, they just have the types of the fields. Tuple structs are useful when you want
to give the whole tuple a name and make the tuple be a different type from other tuples, and
naming each field as in a regular struct would be verbose or redundant.

To define a tuple struct, start with the struct keyword and the struct name followed by the
types in the tuple.

1 struct Color(u8, u8, u8);
2 let black = Color(0, 0, 0);
3 let white = Color(255,255,255);

Listing 5.6: Tuple Struct

Tuple struct instances behave like tuples: you can destructure them into their individual pieces,
you can use a . followed by the index to access an individual value, and so on.

5.4 UNIT STRUCT

You can also define structs that do not have any fields. These are called unit like structs because
they behave similarly to (), the unit type. Unit like structs can be useful in situations inwhich
you need to implement a trait on some type but do not have any data that youwant to store in
the type itself and is particularly relevant for generics. Wewill discuss traits in the following
chapter.

2 pub struct Function; // unit struct, has no data
3
4 impl Function {
5 pub fn say_hello(&self) {
6 println!("{:?}", "Hello" );
7 }
8 }

Listing 5.7: Unit struct

1 let f = st::Function{};
2 f.say_hello();

Listing 5.8: Invoking unit struct function

5.5 METHODS

Methods are similar to functions. they are declaredwith the fn keyword and their name, they
can have parameters and a return value. Methods, unlike functions, are defined within the
context of a struct (or an enumor a trait object, whichwe cover later), and their first parameter
is always self which represents the instance of the struct the method is being called on.



36 chapter 5. struct

To define the function within the context of struct , we start an impl (implementation)
block. Consider the following code:

1 // The ’derive’ attribute automatically creates the implementation
2 // required to make this struct printable with ’fmt::Debug’.
3 #[derive(Debug)]
4 struct Rect {
5 width: u32,
6 height: u32,
7 }
8
9 impl Rect {
10 fn area(&self) −> u32 {
11 self.width * self.height
12 }
13 }
14
15 fn main() {
16 let rect = Rect {
17 width: 30,
18 height: 50,
19 };
20
21 println!("The area of the rectangle is {}", rect.area());
22 }

Listing 5.9: Implementing a method

5.6 OWNERSHIP OF STRUCT DATA

It is possible for structs to store references to data owned by something else, but to do so
requires the use of lifetimes. Lifetimes ensure that the data referenced by a struct is valid for
as long as the struct is.

Notice the usage of lifetime ’a in the following example. Also, note the usage of the pub
keyword before struct and their attributes. These are required as the struct resides in a
separate mod st . Without pub , you will get a compile error.

Methods, of course can take additional parameters as shown in the example below.

12 pub struct Rect<’a> {
13 pub id: &’a str,
14 pub width: i32,
15 pub length: i32
16 }
17
18 impl<’a> Rect<’a> {
19 pub fn area(&self) −> i32 {
20 self.width * self.length



5.7. associated functions 37

21 }
22
23 pub fn volume(&self, height: i32) −> i32 {
24 self.area()*height
25 }
26 }

Listing 5.10: Lifetime in struct

Invoking:

1 let r = st::Rect {id:"abc",width:10, length:20};
2 println!("Area = {}",r.area());
3 println!("Volume = {}",r.volume(10));

Output:

1 Area = 200
2 Volume = 2000

Using methods helps organize the code, all things we can do with the instance of a type will
be collated with the struct . Passing the parameter &self enables the method to access all
the properties of the structure inside the method.

Rust does not have an equivalent to the -> operator; instead, Rust has a feature called
automatic referencing and dereferencing. Calling methods is one of the few places in Rust that
has this behavior. When you call a method with object.something() , Rust automatically
adds in & , &mut , or * so object matches the signature of the method. In other words, the
following are the same:

1 p1.distance(&p2);
2 (&p1).distance(&p2);

The first one looks much cleaner. This automatic referencing behavior works because methods
have a clear receiver - the type of self . Given the receiver and name of a method, Rust can
figure out definitively whether the method is reading (&self) , mutating (&mut self) ,
or consuming (self) . The fact that Rust makes borrowing implicit for method receivers
is a big part of making ownership ergonomic in practice.

Methods can take multiple parameters that we add to the signature after the self parameter,
and those parameters work just like parameters in functions.

5.7 ASSOCIATED FUNCTIONS

Another useful feature of impl blocks is that we’re allowed to define functions within
impl blocks that do not take self as a parameter. These are called associated functions
because they are associated with the struct. They are functions, not methods, because they do
not have an instance of the struct to work with. An example is the String::from associated
function.



38 chapter 5. struct

Associated functions are often used for constructors that will return a new instance of the
struct. For example, we could provide an associated function that would have one dimension
parameter and use that as both width and height, thus making it easier to create a square
Rectangle rather than having to specify the same value twice.

1 impl Rectangle {
2 fn square(size: u32) −> Rectangle {
3 Rectangle {
4 width: size,
5 height: size,
6 }
7 }
8 }

Listing 5.11: Associated Function



chapter 6

TRAIT

In Rust, a trait can be thought of as an equivalent of a Java interface that is used to achieve
abstraction. A struct can implement a trait using the impl keyword and specify its own
definition of the trait’s methods.

6.1 INTRODUCTION TO TRAITS

The best way to get introduced to trait is to study the following example and you will
readily understand how abstractions are introduced and implemented.

2 pub trait Animal {
3 fn eat(&self) {
4 println!("I eat grass");
5 }
6 }
7
8 pub struct Herbivore;
9
10 impl Animal for Herbivore{
11 fn eat(&self) {
12 println!("I eat plants");
13 }
14 }
15
16 pub struct Carnivore;
17
18 impl Animal for Carnivore {
19 fn eat(&self) {
20 println!("I eat meat");
21 }
22 }

Listing 6.1: Trait implementations

Invoking:

1 use tra::Animal;
2
3 let h = tra::Herbivore;
4 h.eat();
5

39



40 chapter 6. trait

6 let c = tra::Carnivore;
7 c.eat();

Listing 6.2: Invoking trait definitions

Output:

1 I eat plants
2 I eat meat

Notice the default implementation of eat in Animal . If Animal is not implemented for
Herbivore , then the default implementation of the trait is invoked and the outputwill be
I eat grass . The structs implement the same trait but exhibit different behaviors because
of their respective unique implementations.

6.2 TRAIT BOUND

Consider the following listing.

27 pub trait Activity {
28 fn fly(&self);
29 }
30
31 #[derive(Debug)]
32 pub struct Eagle;
33
34 impl Activity for Eagle {
35 fn fly(&self) {
36 println!("{:?} is flying",&self);
37 }
38 }
39
40 pub fn activity<T: Activity + std::fmt::Debug>(bird: T) {
41 println!("I fly as an {:?}",bird);
42 }

Listing 6.3: Trait implementations

Invoking:

1 use tra::Activity;
2 let eagle = tra::Eagle;
3 eagle.fly();
4 tra::activity(eagle);

Listing 6.4: Invoking trait definitions

Output:

1 Eagle is flying
2 I fly as an Eagle



6.3. trait object 41

But adding the following line will result in a compile error. This is because the struct Hen
does not implement the trait Activity .

1 let hen = tra::Hen;
2 tra::activity(hen);

Listing 6.5: Invoking trait definitions

Thus while the function activity takes a generic T as an argument, the generic T must
implement trait Activity . Trait bounds allow a a function to only accept types that
implement a certain trait.

Any invocation of the function with an instance of a struct that does not implement the trait
will result in a compile error. Such a function is said to be trait bound.

6.3 TRAIT OBJECT

Trait objects behavemore like traditional objects, they contain both data and behavior. In trait
objects, the data is referenced through a pointer to the data that is actually stored in the heap.
So, even if the size of the data in the heap changes, the size of the pointer in the trait object
remains the same and this makes it much more predictable and manageable while dealing
with memory. This automatically implies that you cannot add data to a trait object. This is
key to understanding trait objects, we are pointing to data at one specific point in time. The
behavior of a trait object comes from a traditional trait that we studied earlier.

Let’s understand trait object through an example. Note the use of Box operator to create
objects on the heap. The size of a trait is not known at compile-time. Therefore, traits have
to be wrapped inside a Box when creating a vector trait object. We will learn more about the
Box operator in a later chapter. A trait object is an object that can contain objects of different
types at the same time (e.g., a vector). The dyn keyword is used when declaring a trait object.
So,

n Box<Trait> becomes Box<dyn Trait>
n &Trait and &mut Trait become &dyn Trait and &mut dyn Trait

46 pub struct Hen;
47
48 #[derive(Debug)]
49 pub struct Horse;
50
51 #[derive(Debug)]
52 pub struct Deer;
53
54 #[derive(Debug)]
55 pub struct Tiger;
56
57 #[derive(Debug)]
58 pub struct Duck;
59



42 chapter 6. trait

60 pub trait Sound {
61 fn sound(&self);
62 }
63
64 impl Sound for Horse {
65 fn sound(&self) {
66 println!("{:?} neighs",&self)
67 }
68 }
69
70 impl Sound for Deer {
71 fn sound(&self) {
72 println!("{:?} barks",&self)
73 }
74 }
75
76 impl Sound for Tiger {
77 fn sound(&self) {
78 println!("{:?} roars",&self)
79 }
80 }
81
82 impl Sound for Duck {
83 fn sound(&self) {
84 println!("{:?} quacks",&self)
85 }
86 }
87
88 pub struct SoundBook {
89 pub sounds: Vec<Box<dyn Sound>>
90 }
91
92 impl SoundBook {
93
94 pub fn run(&self) {
95 for s in self.sounds.iter() {
96 s.sound();
97 }
98 }
99 }

Listing 6.6: Trait object

Invoking:

1 let sound_book = tra::SoundBook {
2 sounds: vec! [
3 Box::new(tra::Horse{}),



6.3. trait object 43

4 Box::new(tra::Deer{}),
5 Box::new(tra::Tiger{}),
6 Box::new(tra::Duck{})
7 ]
8 };
9
10 sound_book.run();

Listing 6.7: Invoking trait object

Output:

1 Horse neighs
2 Deer barks
3 Tiger roars
4 Duck quacks





chapter 7

ENUM & PATTERN MATCHING

Enumerations, also referred to as enums, allow you to define a type by enumerating its possible
variants. When we have to select a value from a list of possible variants, we use enumeration
data types. An enumerated type is declared using the enum keyword. A particularly useful
enum , called Option , which expresses that a value can be either something or nothing. We
will next look at how pattern matching in the match expressionmakes it easy to run different
code for different values of an enum. Finally, we will study how the if let construct, a
convenient and concise idiom, that is available to us to handle enums in our code. Rust’s
enums are most similar to algebraic data types in functional languages, such as F#, OCaml,
and Haskell.

7.1 DEFINING AN ENUM

The following is an example of a basic enum.

2 #[derive(Debug)]
3 pub enum Gender {
4 Male,
5 Female
6 }

Listing 7.1: Enum

Invoking:

1 use enu::Gender;
2 let male = enu::Gender::Male;
3 let female = enu::Gender::Female;
4 println!("{:?}",male);
5 println!("{:?}",female);

Listing 7.2: Invoking enum

Output:

1 Male
2 Female

7.2 STRUCT & ENUM

Rust enums can contain a context, it can be a different one for each variant of the enum. We
can put data directly into each enum variant.

45



46 chapter 7. enum & pattern matching

10 #[derive(Debug)]
11 pub struct MyBlack {
12 pub name: String,
13 pub rgb: (u8,u8,u8)
14 }
15
16 #[derive(Debug)]
17 pub enum Color {
18 Black(MyBlack),
19 White(u8,u8,u8)
20 }
21
22 impl Color {
23 pub fn printColor(&self) {
24 println!("Hi!");
25 }
26 }

Listing 7.3: Enum

Invoking:

1 let my_black = enu::MyBlack {
2 name: String::from("my black"),
3 rgb: (10,10,10)
4 };
5 let black = enu::Color::Black(my_black);
6 let white = enu::Color::White(255,255,255);
7 println!("{:?}",black);
8 println!("{:?}",white);

Listing 7.4: Enum with context

Output:

1 Black(MyBlack { name: "my black", rgb: (10, 10, 10) })
2 White(255, 255, 255)

As in the case of struct, we can also define methods on an enum.

7.3 OPTION ENUM

Option is a predefined enum in the Rust standard library. This enum has two values -
Some(data) and None .

1 enum Option<T> {
2 Some(T), // used to return a value
3 None // used to indicate null, Rust does not support null
4 }

Listing 7.5: Option enum



7.4. match statement 47

Here, the type T represents value of any type. Rust does not support the null keyword. The
value None , in the enum Option , can be used by a function to return a null value. If there is
data to return, the function can return Some(data) . To get the T value out of Option<T> ,
this enum has a large number of methods that are useful in a variety of situations. Below are
some examples:

1 let x: Option<u32> = Some(2);
2 assert_eq!(x.is_some(), true);
3
4 let x: Option<u32> = None;
5 assert_eq!(x.is_some(), false);
6
7 let y = x.unwrap(); // unwraps and gets the value

Listing 7.6: Option examples

7.4 MATCH STATEMENT

Match does what switch does in other languages such as C and Java. The match statement
can be used to compare values stored in an enum .

165 match black {
166 fn_07_enu::Color::White(x,y,z) => println!("{} {} {}",x,y,z),
167 fn_07_enu::Color::Black(x) => println!("{:?}",x.rgb),
168 }

Listing 7.7: Match example

Matches in Rust are exhaustive. We must exhaust every last possibility in order for the code
to be valid and compile. Especially in the case of Option<T> , when Rust prevents us from
forgetting to explicitly handle the None case, it protects us from assuming that we have a
value when we might have null.

Rust also has a pattern we can use when we don’t want to list all possible values. If we only
care about the values 1, 3, 5, and 7, we can use the special pattern _ instead to handle the rest.
The () is just the unit value, so nothing will happen in the _ case.

172 let some_u8_value = 4u8;
173 match some_u8_value {
174 1 => println!("One"),
175 3 => println!("Three"),
176 5 => println!("Five"),
177 7 => println!("Seven"),
178 9 => println!("Nine"),
179 _ => (),
180 }

Listing 7.8: Placeholder in match



48 chapter 7. enum & pattern matching

Similarly, match can be easily used with Option . The example of is_even function,
which returns Option type, can also be implemented with match statement as shown
below.

30 pub fn match_example(number: i32) {
31
32 match is_even(number) {
33 Some(data) => {
34 if data == true {
35 println!("Even number");
36 }
37 },
38 None => {
39 println!("Not an even number");
40 }
41 }
42 }
43
44 fn is_even(number:i32) −> Option<bool> {
45 if number%2 == 0 {
46 Some(true)
47 } else {
48 None
49 }
50 }

Listing 7.9: match with Option

Invoking:

1 enu::match_example(4);

Output:

1 Even number

7.5 IF LET STATEMENT

The if let syntax of Rust makes the code concise when we are interested in only one of the
cases.

1 fn main() {
2 let some_u8_value = Some(0u8);
3 if let Some(3) = some_u8_value {
4 println!("three");
5 }
6 }

Listing 7.10: if let example



chapter 8

COLLECTIONS

Rust’s standard library includes a number of very useful data structures called collections.
Most other data types represent one specific value, but collections can contain multiple values.
Unlike the built-in array and tuple types, the data these collections point to is stored on
the heap. This means the amount of data does not need to be known at compile time and can
grow or shrink as the program runs. Below are three commonly used collections.

n A vector allows you to store a variable number of values next to each other.
n A HashMap allows you to associate a value with a particular key. It is a particular

implementation of the more general data structure called a map.
n A HashSet which contains unique elements only.

8.1 VECTOR

A Vector is a resizable array. It stores values in contiguous memory blocks in the heap. The
predefined structure Vec can be used to create vectors.

n A Vector is a homogeneous collection.
n A Vector can grow or shrink at runtime.
n A Vector stores data as sequence of elements in a particular order. Every element in a

Vector is assigned a unique index number starting with zero.
n A Vector will only append values to (or near) the end. In other words, a Vector can be

used to implement a stack.
n Memory for a Vector is allocated in the heap.

You create a vector using Vec as follows:

1 let mut instance_name = Vec::new();

Listing 8.1: Vector

Or with a macro:

1 let v = vec![];

Listing 8.2: Create a vector using vec! macro

Values in the vector are accessed using the index, e.g., v[1] .

Let us create a vector and print its length.

1 let mut v = vec!["Hello","how","are","you"];
2 println!("{}",v.len());

Listing 8.3: Length of vector

49



50 chapter 8. collections

Output:

1 4

We will now add another word to the vector.

1 v.push("today");
2 println!("{:?}",v);

Listing 8.4: Push

Output:

1 ["Hello", "how", "are", "you", "today"]

We can use pop to remove the added word.

1 v.pop();
2 println!("{:?}",v);

Listing 8.5: Pop

Output:

1 ["Hello", "how", "are", "you"]

A word can also be inserted into a specific index location.

1 v.insert(4, "sir");
2 println!("{:?}",v);

Listing 8.6: Insert

Output:

1 ["Hello", "how", "are", "you", "sir"]

Remove a value by referring to its index.

1 v.remove(0);
2 println!("{:?}",v);

Listing 8.7: Remove by index

Output:

1 ["how", "are", "you", "sir"]

It is also possible to remove a specific value.

1 let index = v.iter().position(|x| x == &"sir" ).unwrap();
2 v.remove(index);
3 println!("{:?}",v);

Listing 8.8: Remove by value

Output:



8.2. hashmap 51

1 ["how", "are", "you"]

Iterate over a vector:

1 for i in &v {
2 println!("{}", i);
3 }

Listing 8.9: Iterate

Output:

1 how
2 are
3 you

8.2 HASHMAP

A map is a collection of key-value pairs (called entries). No two entries in a map can have
the same key. In short, a map is a lookup table. A HashMap stores the keys and values in a
hash table. The entries are stored in an arbitrary order. The key is used to search for values in
the HashMap. The HashMap structure is defined in the std::collections module. This
module should be explicitly imported to access the HashMap structure. The hash map will
only contain one key/value pair.

In the following example, we create a HashMap and then manipulate its content.

1 use std::collections::HashMap;
2 let mut hm: HashMap<String,String> = HashMap::new();
3 hm.insert("MA".to_string(),"Massachusetts".to_string());
4 hm.insert("NY".to_string(),"New York".to_string());
5 hm.insert("CA".to_string(),"California".to_string());
6
7 for (key, val) in hm.iter() {
8 println!("key: {} val: {}", key, val);
9 }
10 println!("");
11
12 hm.remove("CA");
13 for (key, val) in hm.iter() {
14 println!("key: {} val: {}", key, val);
15 }
16
17 println!("{:?}", hm.len());

Listing 8.10: Insert and remove elements in a HashMap

Output:

1 key: NY val: New York



52 chapter 8. collections

2 key: MA val: Massachusetts
3 key: CA val: California
4
5 key: NY val: New York
6 key: MA val: Massachusetts
7 2

Note that youcannotupdate aHashMapusing hm["MA"]="MASSACHUSETTS".to_string();
This will generate a compile error. This is because Indexing immutably and indexing muta-
bly are provided by two different traits: Index and IndexMut , respectively. Currently,
HashMap does not implement IndexMut , while Vec does. We can, of course, remove
a key and then insert the same key with the updated value. Alternately, we can update as
follows:

1 *hm.get_mut("MA").unwrap() = "MASSACHUSETTS".to_string();

Listing 8.11: Update a hashmap

8.3 HASHSET

AHashSet’s unique feature is that it is guaranteed not to have duplicate elements. HashSet is a
set of unique values of type T . Adding and removing values is fast, and it is fast to askwhether
a given value is in the set or not. TheHashSet structure is defined in the std::collections
module. Consider a HashSet to be a HashMap where we just care about the keys (HashSet<T>
is, in actuality, just a wrapper around HashMap<T, ()>).

Following is an example code to create a HashSet , insert and remove values.

1 use std::collections::HashSet;
2 let mut hs: HashSet<String> = HashSet::new();
3 hs.insert("Tennis".to_string());
4 hs.insert("Tennis".to_string());
5 hs.insert("Soccer".to_string());
6 hs.insert("Badminton".to_string());
7
8 for val in hs.iter() {
9 println!("val: {}", val);
10 }
11 println!("");
12
13 hs.remove("Badminton");
14 for val in hs.iter() {
15 println!("val: {}", val);
16 }
17 }
18
19 println!("{:?}", hs.len());

Listing 8.12: HashSet example



8.3. hashset 53

1 val: Soccer
2 val: Badminton
3 val: Tennis
4
5 val: Soccer
6 val: Tennis
7 2

Note that "Tennis" has been inserted twice and yet the HashSet has only one occurrence of
"Tennis".





chapter 9

ERROR HANDLING

Errors are fairly routine in software. Luckily, Rust has multiple mechanisms for handling
situations when things go wrong. In many cases, Rust requires you to acknowledge the
possibility of an error and take some action so that your code will compile. This requirement
makes your program more robust by ensuring that you will discover errors and handle them
appropriately before you have deployed your code to production.

In Rust, errors are classified into two major categories recoverable and unrecoverable. A
recoverable error is an error that can be corrected. A program can retry the failed operation
or specify an alternate course of action when it encounters a recoverable error. Recover-
able errors do not cause a program to fail abruptly. An example of a recoverable error is
File Not Found error . Unrecoverable errors cause a program to fail abruptly. A pro-
gram cannot revert to its normal state if an unrecoverable error occurs. It cannot retry the
failed operation or undo the error. An example of an unrecoverable error is trying to access a
location beyond the end of an array.

Most languages do not distinguish between these two kinds of errors and handle both in the
same way, using mechanisms such as exceptions. Unlike other programming languages, Rust
does not have exceptions. It returns an enum Result<T,E> for recoverable errors. For
unrecoverable errors, Rust calls the panic! macro that causes the program to exit abruptly
and provide feedback to the caller of the program. Below is an example:

1 let x = 100;
2 if (x > 10) {
3 panic!("I am panicking, can’t proceed any further");
4 }
5 println!("I won’t reach this line!");
6 }

Listing 9.1: An example of panic!

9.1 RECOVERABLE ERRORS

The enum Result <T,E> is used to handle recoverable errors. It has two enumerations -
OK(T) and Err(E) . T and E are generic type parameters. T represents the type of the
value that will be returned in a success case within the OK variant, and E represents the type
of the error that will be returned in a failure case within the Err variant.

55



56 chapter 9. error handling

1 enum Result<T,E> {
2 OK(T),
3 Err(E)
4 }

Listing 9.2: enum Result

1 use std::fs::File;
2 let f = File::open("mypicture.jpg"); // file does not exist
3 match f {
4 Ok(f)=> {
5 println!("file found {:?}",f);
6 },
7 Err(e)=> {
8 println!("file not found \n{:?}",e); //handled error
9 }
10 }
11 println!("I will print this");

Listing 9.3: Recoverable error

Output:

1 Os { code: 2, kind: NotFound, message: "No such file or directory" }
2 I will print this

Result<T,E> implements the unwrap() function that returns the actual result when an
operation succeeds. It returns a panic with a default error message if an operation fails. The
expect() function, on the other hand, can return a custom error message in case of a panic.

1 let f = File::open("somefile.txt").expect("File not found!");

Listing 9.4: Example of expect



chapter 10

INPUT & OUTPUT

In this chapter we will review how to read from and write to standard input, i.e., the keyboard
as well as read from file input and write to file output.

10.1 STANDARD I/O - READ &WRITE

Rust’s standard library features for input and output are organized around two traits.

We will need to use the following traits in the following functions.

2 use std::io::Write;
3 use std::io::Read;
4 use std::fs::OpenOptions;
5 use std::fs;

Listing 10.1: Modules required

The following example reads values from the standard input.

9 pub fn std_inp() {
10 let mut line = String::new();
11 println!("Please enter your name:");
12 let nb = std::io::stdin().read_line(&mut line).unwrap();
13 println!("Hi {}", line);
14 println!("# of bytes read , {}", nb);
15 }

Listing 10.2: Reading from standard input

The following example writes to the standard output.

10.2 COMMAND LINE ARGS

Command lineparameters canbeused topassvalues to themain() function. The std::env::args()
returns the command line arguments. The following example writes to the standard output.

31 pub fn cl_arg() {
32 let cmd_line = std::env::args();
33 println!("# of command line arguments:{}",cmd_line.len());
34 for arg in cmd_line {
35 println!("{}",arg);
36 }

57



58 chapter 10. input & output

37 }

Listing 10.3: Command Line Arguments

10.3 FILE I/O - READ &WRITE

Following is an example code to read from a file.

41 pub fn file_read(filename: &str){
42 let mut file = std::fs::File::open(filename).unwrap();
43 let mut contents = String::new();
44 file.read_to_string(&mut contents).unwrap();
45 print!("{}", contents);
46 }

Listing 10.4: Read from a file

Following is an example code to write to a file.

50 pub fn file_write(filename: &str, s: &str) {
51 let mut file = std::fs::File::create(filename)
52 .expect("Create failed");
53 file.write_all(s.as_bytes())
54 .expect("write failed");
55 println!("Write completed" );
56 }

Listing 10.5: Write to a file

10.4 APPEND TO A FILE

Following is an example code to append to a file.

60 pub fn file_append(filename: &str, s: &str) {
61 let mut file = OpenOptions::new()
62 .append(true).open(filename)
63 .expect("Failed to open file");
64 file.write_all(s.as_bytes()).expect("write failure");
65 println!("Appended file {}",filename);
66 }

Listing 10.6: Append to a file

10.5 COPY A FILE

Following is an example code to copy file.



10.6. delete a file 59

70 pub fn file_copy(src: &str, des: &str) {
71 let mut file_inp = std::fs::File::open(src).unwrap();
72 let mut file_out = std::fs::File::create(des).unwrap();
73 let mut buffer = [0u8; 4096];
74 loop {
75 let nbytes = file_inp.read(&mut buffer).unwrap();
76 file_out.write(&buffer[..nbytes]).unwrap();
77 if nbytes < buffer.len() {
78 break;
79 }
80 }
81 }

Listing 10.7: Copy a file

10.6 DELETE A FILE

Following is an example code to delete a file.

85 pub fn file_delete(filename: &str) {
86 fs::remove_file(filename).expect("Unable to delete file");
87 println!("Deleted file {}",filename);
88 }

Listing 10.8: Delete a file





chapter 11

CLOSURES

In this chapter, we study features of Rust that are similar to many features of other languages
that are referred to as functional languages.

11.1 CLOSURES

Rust’s closures are anonymous functions that can be saved in a variable or can be passed
as arguments to other functions. One can create the closure in one place and then call the
closure to evaluate it in a different context. There is an important differentiation between
closures and functions. Unlike functions, closures can capture values from the scope in
which they are defined. Closures do not require annotating the types of the parameters or the
return values. Type annotations are required on functions because they are part of an explicit
interface exposed to its users. Defining this interface rigidly is important for ensuring that
users of the function agree on what types of values a function uses and returns. But closures
are not exposed through interfaces. They are stored in variables and and the variables are used
within its scope.

Closures areusually short and relevant onlywithin anarrowcontext rather than in anyarbitrary
scenario. Within these limited contexts, the compiler is reliably able to infer the types of the
parameters and the return type. This is similar to how the compiler is able to infer the types of
most variables. Making programmers annotate the types in these small, anonymous functions
would be bothersome and largely redundant as the compiler already has that information
available with it.

Below is an example of a closure.

1 let some_closure = |number| {
2 println!("calculating ...");
3 thread::sleep(Duration::from_secs(3));
4 number + 1
5 };

Listing 11.1: Closure example

The closure definition comes after the = to assign it to the variable some_closure . To define
a closure, we start with a pair of vertical pipes | , inside which we specify the parameters to
the closure. This syntax is similar to the closure definitions in Smalltalk and Ruby languages.
This closure has one parameter named number . If we had more than one parameter, we
would separate them with commas, like |param1, param2| .

Note that the let statementmeans some_closure contains the definition of an anonymous
function, not the resulting value of calling the anonymous function. Recall that we are using

61



62 chapter 11. closures

a closure because we want to define the code to call at one location and call it at a later location.
The first time we call some_closure with the u32 value, the compiler infers the type of
num and the return type of the closure to be u32 . Those types are then locked in to the
closure in some_closure , and we get a type error if we try to use a different type with the
same closure.

As with variables, we can add type annotations if we want to increase explicitness and clarity
at the cost of being more verbose than is required.

1 let some_closure = |number: u32| −> u32 {
2 println!("calculating ...");
3 thread::sleep(Duration::from_secs(3));
4 number + 1
5 };

Listing 11.2: Closure example

Consider the following example:

2 pub fn closure_example1(x: i32, y: i32) {
3 let add = |x,y| {
4 x + y
5 };
6 println!("Closure {:?}", add(x,y));
7 }

Listing 11.3: Closure example 1

Invoking:

1 fn_11_clo::closure_example1(3,4);

Output:

1 Closure 7

In the following example, notice that the variable y is not in the parameter list of add and it
it is captured in the closure.

11 pub fn closure_example2(x:i32) {
12 let y = 3;
13 let add = |x| {
14 x + y
15 };
16 println!("Closure {:?}", add(x));
17 }

Listing 11.4: Closure example 2

Invoking:

1 fn_11_clo::closure_example2(4);

Output:



11.2. storing closures with fn trait 63

1 Closure 7

In the following example, a closure is passed to another function. Notice that to be able to
pass around closures, we need to use one of the FnOnce , FnMut , or Fn traits. These traits
each represent more and more restrictive properties about closures/functions, indicated by
the signatures of their call_... method, and particularly the type of self .

n FnOnce (self) are functions that can be called once.
n FnMut (&mut self) are functions that can be called if they have &mut access to

their environment.
n Fn (&self) are functions that can be called if they only have & access to their

environment.

21 pub fn closure_example3(x:i32) −> i32 {
22
23 let y = 3;
24 let add = |x| {
25 x + y
26 };
27
28 let result = receive_closure(add, x);
29 result
30 }
31
32 // A function that takes a closure and returns an i32
33 fn receive_closure<F>(f: F, x: i32) −> i32
34 where
35 F: Fn(i32) −> i32
36 {
37 f(x) // as i32
38 }

Listing 11.5: Closure example 3

Invoking:

1 let result = fn_11_clo::closure_example3(5);
2 println!("Result from closure is {}",result);

Output:

1 Result from closure is 8

Note that the value of y is captured in the closure.

11.2 STORING CLOSURES WITH Fn TRAIT

With struct and closure we can create what is known as the memoization or lazy
evaluation pattern. We can create a struct that will hold the closure and the resulting value of



64 chapter 11. closures

calling the closure. The struct will execute the closure only if we need the resulting value, and
will cache the resulting value automatically.

Tomake a struct that holds a closure, we need to specify the type of the closure because a struct
definition needs to know the types of each of its fields. Each closure instance has its own
unique anonymous type, i.e., even if two closures have the same signature, their types are
still considered different. All closures implement at least one of these traits: Fn , FnMut or
FnOnce and are provided by the standard library.

In listing 11.6 the struct Cacher has a calculation field of the generic type T . The
trait bounds on T specify that it is a closure byusing the Fn trait. Any closurewewant to store
in the calculation field must have one u32 parameter (specified within the parentheses
after Fn ) and must return a u32 (specified after the -> ).

The value field is of type Option<u32> . Before we execute the closure, value will be None .
When code using a Cacher asks for the result of the closure, the Cacher will execute the closure
at that time and store the result within a Some variant in the value field. Then if the code
asks for the result of the closure again, instead of executing the closure again, the Cacher will
return the result held in the Some variant.

42 struct Cacher<T>
43 where
44 T: Fn(u32) −> u32, // trait bound
45 {
46 calc: T, // calc stores the closure that is trait bound
47 value: Option<u32>, // Result of calling the function calc
48 }

Listing 11.6: Cacher

52 impl<T> Cacher<T>
53 where
54 T: Fn(u32) −> u32 , // trait bound
55 {
56 fn new(calc: T) −> Cacher<T> {
57 Cacher { // expression returning the function
58 calc,
59 value: None
60 }
61 }
62
63 fn func(&mut self, arg: u32) −> u32 {
64 match self.value {
65 Some(v) => v, // value exists, return v
66 None => { // value does not exit
67 let v = (self.calc)(arg); // invoke calc with arg
68 self.value = Some(v); // wrap value in Option
69 v // return v
70 }
71 }



11.2. storing closures with fn trait 65

72 }
73 }

Listing 11.7: Cacher Implementation

Below is an example of the usage of Cacher .

77 use std::thread;
78 use std::time::Duration;
79 use core::fmt;
80
81 pub fn generate_force(hp: u32, random_number: u32) {
82
83 let mut my_closure = Cacher::new(|number| {
84 println!("calculating HP ...");
85 thread::sleep(Duration::from_secs(1));
86 number
87 });
88
89 if hp < 25 {
90 println!("Low HP drive slow {}", my_closure.func(hp));
91 println!("Low HP drive steady {}", my_closure.func(hp));
92 } else {
93
94 if random_number == 3 {
95 println!("No HP generated");
96 } else {
97 println!(
98 "Sufficient HP {}", my_closure.func(hp)
99 );
100 }
101 }
102 }

Listing 11.8: Using Cacher

Output:

1 calculating HP ...
2 Low HP drive slow 20
3 Low HP drive steady 20

Instead of saving the closure in a variable directly, we save a new instance of Cacher that
holds the closure. Then, in each place we want the result, we call the value method on the
Cacher instance. We can call the value method as many times as we want, or not call it at
all, and the expensive calculation will be run a maximum of once.





chapter 12

SMART POINTERS

Pointers in a language is a variable that stores the address of another variable. This address
refers to, or “points at,” some other data. We are already familiar with the most common kind
of pointer in Rust, the reference. References are indicated by the & symbol and borrow the
value they point to. But references do not have any special capabilities other than referring
to data. However, they also do not have any overhead and are the kind of pointers we use
frequently.

Smart pointers originated in C++. In Rust, the different smart pointers defined in the standard
library provide functionality beyond what is provided by references. In Rust, which uses the
concept of ownership and borrowing, an additional difference between references and smart
pointers is that references are pointers that only borrow data. Smart pointers, in many cases,
own the data they point to.

Smart pointers are mostly implemented using structs. These structs implement the Deref
and Drop traits.

n The Deref trait allows an instance of the smart pointer struct to behave like a
reference so that the code works with either references or smart pointers.

n The Drop trait allows us to customize the code that is run when an instance of the
smart pointer goes out of scope.

12.1 BOX

The most straightforward smart pointer is a box, whose type is written Box<T> . Boxes allow
you to store data on the heap rather than the stack. What remains on the stack is the pointer
to the heap data. Boxes do not have any performance overhead, other than storing their data
on the heap instead of on the stack. Box is useful under these circumstances.

n A type whose size is unknown at compile time and we want to use a value of that
type in a context that requires an exact size.

n A large amount of data, we want to transfer ownership but do not want the data to be
copied.

n Own a value and its type must implement a certain trait rather being of a particular
type.

1 let x = Box::new(100);
2 println!("x = {}", x);

Listing 12.1: Storing an i32 value on the heap using a box

Output:

67



68 chapter 12. smart pointers

1 x = 100

We define the variable x to have the value of a Box that points to the value 100 which is
allocated on the heap. We can access the data in the box in the same way we access data on the
stack. Just as in any owned value, when a box goes out of scope it will be deallocated.

At compile time, Rust needs to know how much space a type takes up. One type whose size
can not be known at compile time is a recursive type. The nesting of values could theoretically
continue infinitely and so Rust will not know how much space a value of a recursive type
actually needs. However, boxes have a known size, so by inserting a box in a recursive type
definition, you can have recursive types.

12.1.1 CONS LIST

To understand the concept of a Box better, let us review the cons list. A cons list is a data
structure that comes from the Lisp programming language and its dialects. In Lisp, the cons
function (short for “construct function”) constructs a new pair from its two arguments, which
usually are a single value and another pair. These pairs containing pairs form a list. The cons
function concept has made its way into more general functional programming jargon: “to cons
x onto y” informally means to construct a new container instance by putting the element x at
the start of this new container, followed by the container y. Each item in a cons list contains
two elements: the value of the current item and the next item. The last item in the list contains
only a value called Nil without a next item. A cons list is produced by recursively calling the
cons function. The canonical name to denote the base case of the recursion is Nil. Although
functional programming languages use cons lists frequently, the cons list is not a commonly
used data structure in Rust. Most of the time when you have a list of items in Rust, Vec<T>
is a better choice to use.

Since Box<T> is a pointer, Rust knows how much space a Box<T> needs as a pointer’s size
does not change based on the amount of data it is pointing to. Conceptually, we will have
lists "holding" other lists. This is now more like placing items next to each other.

1 use crate::List::{Cons, Nil};
2
3 enum List {
4 Cons(i32, Box<List>),
5 Nil
6 }
7
8 let list = Cons(1,Box::new(Cons(2,Box::new(Cons(3,Box::new(Nil))))));

Listing 12.2: Definition of List that uses Box<T> in order to have a known size

Boxes provide only the indirection and heap allocation, they do not have any other special
capabilities. They also do not have any performance overhead. The Box<T> type is a smart
pointer because it implements the Deref trait, which allows Box<T> values to be treated
like references. When a Box<T> value goes out of scope, the heap data that the box is pointing
to is cleaned up as well because of the Drop trait implementation.



12.2. deref trait 69

12.2 DEREF TRAIT

Implementing the Deref trait allows you to customize the behavior of the dereference oper-
ator, * (as opposed to the multiplication or glob operator). By implementing Deref in such
a way that a smart pointer can be treated like a regular reference, you can write code that
operates on references and use that code with smart pointers too.

Let’s first look at how the dereference operator works with regular references.

1 let x = 5;
2 let y = Box::new(x);
3 assert_eq!(5, x);
4 assert_eq!(5, *y);

Listing 12.3: Using the dereference operator on a Box<i32>

Let us define a custom type that behaves like Box<T>and seewhy thedereference operator does
not work like a reference on our newly defined type. Implementing the Deref trait makes it
possible for smart pointers to work in ways similar to references. The type Target = T;
syntax defines an associated type for the Deref trait to use.

1 let x = MyBox{a:100};
2 println!("{}",*(x.deref()));
3
4 #[derive(Debug)]
5 struct MyBox<T> { // same as: struct MyBox<T>(T);
6 a: T
7 }
8
9 use std::ops::Deref;
10 impl<T> Deref for MyBox<T> {
11 type Target = T;
12
13 fn deref(&self) −> &T {
14 &self.a
15 }
16 }

Output:

1 Dereferenced: 100

12.3 DROP TRAIT

In languages such as C/C++, the programmer must call code to free memory or resources
every time they finish using an instance of a smart pointer. If they forget, the system might
become overloaded and crash. In Rust, you can specify that a particular bit of code be run
whenever a value goes out of scope, and the compiler will insert this code automatically. As a



70 chapter 12. smart pointers

result, you don’t need to be careful about placing cleanup code everywhere in a program that
an instance of a particular type is finished with, the program still won’t leak resources.

Rust alleviates this problem by providing the Drop trait. This trait is important to smart
pointers. This trait enables us to customize what happens when a value is about to go out of
scope. In the implementation for the Drop trait on any type, you can specify what needs to
happen which can include activities such as releasing resources such as files, network connec-
tions, database connections, etc. The functionality of the Drop trait is almost always used
when implementing a smart pointer. For example, Box<T> customizes Drop to deallocate
the space on the heap that the box points to.

We specify the code to run when a value goes out of scope by implementing the Drop trait.
The Drop trait requires us to implement one method named drop that takes a mutable
reference to self. To see when Rust calls drop, let us implement drop in the following example.

1 let x = mysmaptr{ data : String::from("Hello") };
2 println!("struct mysmaptr with data {}", x.data);
3
4 struct mysmaptr {
5 data: String
6 }
7
8 impl Drop for mysmaptr {
9 fn drop(&mut self) {
10 println!("Dropping struct mysmaptr with data {}", self.data);
11 }
12 }

Output:

1 struct mysmaptr with data Hello
2 Dropping struct mysmaptr with data Hello



chapter 13

CONCURRENCY

Concurrent programming means different parts of a program execute independently to take
advantage of multiple CPUs. The features that run these independent parts are called threads.
Splitting the computation in your program into multiple threads can improve performance
because the programdoesmultiple tasks at the same time, but it also adds complexity. Because
threads can run simultaneously, there’s no inherent guarantee about the order in which parts
of your code on different threads will run. This can lead to problems, such as race conditions,
deadlocks. Historically, concurrent programming has been difficult and error prone. Bugs
that occur only in certain situations and are hard to reproduce and fix reliably.

Before we dive into details, let’s review some terms:

n Parallel computing is the ability to domultiple things simultaneously. This is possible
only if you have multiple cores or CPUs. This is obvious as you cannot make one
processor do two computations at the same time.

n Concurrent computing is the ability to do multiple things but not at once.
n Task is a generic term for some computing running in a parallel or concurrent system.

A thread can be thought of as a task.
n Asynchronous computing refers to language features that enable parallelism or con-

currency.
n Cooperative Multitasking means each task decides when to yield to another task.
n Preemptive Multitasking means the system decides when to yield to another task.
n NativeThreads -Also called 1:1 threading, are tasks providedby the operating system,

1 task per 1 thread. These are part of the system and the operating system schedules
them. They are resource heavy and a limited number of them can be created.

n Green Threads - Also called N:M threading, where the runtime provides task abstrac-
tions and maps N program threads to M system threads. These are not part of the
system, the runtime does their scheduling. The stack growth can cause issues as the
green thread can run out the small amount of stack (there are ways of handling it)
and there is a overhead calling into C because C expects a real stack.

Developers of Rust discovered that the ownership and type systems are the keys to help
manage memory safety and address concurrency problems. By leveraging Rust’s unique
concept of ownership and type checking,many concurrency errors are reduced to compile-time
errors in Rust rather than runtime errors. Rather than spending significant amounts of time
trying to reproduce the exact circumstances underwhich a runtime concurrency bug occurs, in
Rust, incorrect code will refuse to compile and present an error explaining the problem. Rust
developers have nicknamed this aspect of Rust as fearless concurrency. Fearless concurrency
allows you to write code that is free of subtle bugs and is easy to refactor without introducing
new bugs.

71



72 chapter 13. concurrency

Many languages are dogmatic about the solutions they offer for handling concurrent problems.
For example, Erlang has elegant functionality for message-passing concurrency but has only
obscure ways to share state between threads. Supporting only a subset of possible solutions
is a reasonable strategy for higher-level languages, because a higher-level language promises
benefits from giving up some control to gain abstractions. However, lower-level languages are
expected to provide the solution with the best performance in any given situation and have
fewer abstractions over the hardware. Rust offers a variety of tools for modeling problems in
whatever way is appropriate for your situation and requirements.

13.1 THREADS

Let us first include the modules that we will need for our example codes.

2 use std::sync::mpsc;
3 use std::thread;
4 use std::time::Duration;
5 use std::sync::{Arc,Mutex};
6 use std::process;

10 pub fn concur_example() {
11 let handle = thread::spawn( || {
12 for i in 1..10 {
13 println!("Hello # {} from the spawned thread!", i);
14 thread::sleep(Duration::from_millis(1));
15 }
16 });
17
18 for i in 1..5 {
19 println!("Hi # {} from the main thread!", i);
20 thread::sleep(Duration::from_millis(1));
21 }
22
23 handle.join().unwrap();
24 }

Listing 13.1: Thread example

Invoking function concur_example() will result in the following:

Output:

1 Hi # 1 from the main thread!
2 Hello # 1 from the spawned thread!
3 Hi # 2 from the main thread!
4 Hello # 2 from the spawned thread!
5 Hi # 3 from the main thread!
6 Hello # 3 from the spawned thread!
7 Hi # 4 from the main thread!
8 Hello # 4 from the spawned thread!



13.2. message passing to transfer data between threads 73

9 Hello # 5 from the spawned thread!
10 Hello # 6 from the spawned thread!
11 Hello # 7 from the spawned thread!
12 Hello # 8 from the spawned thread!
13 Hello # 9 from the spawned thread!
14

Calling join on the handle blocks the thread currently running until the thread repre-
sented by the handle terminates. Blocking a thread means that thread is prevented from
performing work or exiting. If the call to handle.join().unwrap(); is moved from line
17 to line 11, then the output will no longer will be interleaved as the main thread will wait for
the spawned thread to finish before starting its own loop .

13.2 MESSAGE PASSING TO TRANSFER DATA BETWEEN THREADS

An increasingly popular approach to ensuring safe concurrency is message passing, where
threads or actors communicate by sending each other messages containing data. Here’s the
idea in a slogan from the Go language documentation: “Do not communicate by sharing
memory; instead, share memory by communicating.”

Rust has implementation of a channel to send and receive messages between concurrent
sections of the code. A channel has two halves, a transmitter and a receiver. Let’s look at
the following code that has multiple producers of messages and a single receiver.

28 pub fn concur_example2() {
29 // multiple producer, single consumer
30 let (tx, rx) = mpsc::channel();
31
32 // clone a second producer
33 let tx2 = mpsc::Sender::clone(&tx);
34
35 // spawn a thread and move the transmitter into the closure
36 // spawned thread will now own the transmitter
37 thread::spawn( move || {
38 let vals = vec![
39 String::from("Hello"),
40 String::from("from"),
41 String::from("thread−1"),
42 ];
43
44 for val in vals {
45 tx.send(val).unwrap();
46 thread::sleep(Duration::from_secs(1));
47 }
48 });
49
50 // same comments of the previous code block apply here.



74 chapter 13. concurrency

51 thread::spawn( move || {
52 let vals = vec![
53 String::from("Hi"),
54 String::from("your"),
55 String::from("thread−2"),
56 ];
57
58 for val in vals {
59 tx2.send(val).unwrap();
60 thread::sleep(Duration::from_secs(1));
61 }
62 });
63
64 // receive the result, timeout beyond 1 sec
65 let result =
66 rx.recv_timeout(Duration::from_millis(1000));
67
68 match result {
69 Err(e) => {
70 println!("{:?}",e);
71 process::exit(0);
72 },
73 Ok(x) => {
74 for received in rx {
75 println!("Got: {}", received);
76 }
77 }
78 }
79 }

Listing 13.2: Channel example

Invoking function concur_example2() will result in the following:

Output:

1 Got: Hello
2 Got: Hi
3 Got: your
4 Got: from
5 Got: thread−1
6 Got: thread−2

Listing 13.3: Channel

13.2.1 CHANNELS & OWNERSHIP TRANSFERENCE

The ownership rules play a vital role in message sending because they help you write safe,
concurrent code. Preventing errors in concurrent programming is the advantage of thinking



13.3. shared state concurrency 75

about ownership throughout your Rust programs. By adding the move keyword before the
closure, we force the closure to take ownership of the values it’s using rather than allowing
Rust to infer that it should borrow the values. Any attempt to access the variable vals after
it has been sent will generate a compile error. This is how Rust ensures safety in concurrency.

13.3 SHARED STATE CONCURRENCY

Channels in any programming language are similar to single ownership because once a value
is transferred down a channel, you can no longer use that value. In contrast, shared memory
concurrency is like having multiple ownership. Multiple threads can access the same memory
location at the same time. Smart pointers make multiple ownership possible but multiple
ownership can add complexity because these different owners need managing. Rust’s type
system and ownership rules greatly assist in getting this management correct. We will look at
mutex , a common concurrency primitive, for shared memory. But management of mutexes
canbe incredibly trickyasonehas toget the lockingandunlocking correct at all times. However,
thanks to Rust’s type system and ownership rules, you cannot go wrong on locking and
unlocking.

n Mutex<T> is a smart pointer.
n The call to lock returns a smartpointer called MutexGuard , wrapped ina LockResult

that is handled with the call to unwrap .
n The MutexGuard can be dereferenced to point to the data.
n The MutexGuard has adrop implementation that releases the lockonce MutexGuard

goes out of scope. With this, we do not risk forgetting to unlock the mutex because
this is done automatically in Rust.

In the code below, we use the smart pointer Arc<T> , an Atomically Referenced Counted
type. It is needed for thread safety in multi-threaded programs.

83 pub fn mutex_example() {
84 let counter = Arc::new(Mutex::new(0)); // atomic ref count
85 let mut handles = vec![]; // stores references to the threads
86
87 for _ in 0..10 {
88 let counter = Arc::clone(&counter); // clone the arc
89
90 // use the move closure and spawn 10 threads
91 let handle = thread::spawn( move || {
92 let mut num = counter.lock().unwrap();
93 *num += 1;
94 });
95 handles.push(handle);
96 }
97 // join the threads
98 for handle in handles {
99 handle.join().unwrap();
100 }



76 chapter 13. concurrency

101 println!("Result: {}", *counter.lock().unwrap());
102 }

Listing 13.4: Mutex example

Arc is an Atomically Reference Counted type. Basically, it is a primitive type that is safe
to be shared across multiple threads. The rest of the code is self explanatory, it uses concepts
already discussed earlier.

13.4 ASYNC/AWAIT

Async/await are special pieces of Rust syntax that make it possible to yield control of the
current thread rather than blocking it allowing other code to make progress while waiting
on an operation to complete. The async/await syntax lets you write code that feels syn-
chronous but is actually asynchronous. In Rust, deferred computations due to "long" running
programs are called futures. While most of the concepts are fairly similar with other program-
ming languages, in Rust you need to pick a runtime to actually run your asynchronous code.
Recall that a runtime describes software/instructions that are executed while your program is
running, especially those instructions that you did not write explicitly, but are necessary for
the proper execution of your code. Since Rust targets everything from bare metal, embedded
devices to programs running in an advanced OS, it focuses on zero-cost abstractions and you
will have to select a runtime which is a library code implementing the specific features.

�An async application should pull in at least two crates from Rust’s ecosystem:

1. futures, an official Rust crate that lives in the rust-lang repository
2. A runtime of your choosing, such as tokio, async_std, etc.

The de facto standard library providing a runtime system for green threads and asynchronous
I/O is tokio which we will use. tokio is an event-driven, non-blocking I/O platform for
writing asynchronous applications with the Rust programming language. tokio has zero-
cost abstractions and delivers bare-metal performance. It leverages Rust’s ownership, type
system, and concurrency model to reduce bugs and ensure thread safety. It is scalable because
of its minimal footprint, and handles backpressure and cancellation naturally.

We first add the dependencies in Cargo.toml .

1 futures = { version = "0.3.*" }
2 tokio = {version = "0.2.*", features = ["full"] }

The "full" feature flag tells tokio to enable all public APIs. Irrespective of which runtime we
choose to use, we need to do three distinct operations in an async code.

1. Start the runtime.
2. Spawn a Future. Future is an object thats act as a proxy for a result that is initially not

known but will be known at a future time.
3. Spawn blocking or CPU intensive tasks which are long running.

The tokio macro #[tokio::main] lets us pull another trick to further simplify our code
andmake it as if Rust had an asynchronous runtime built-in. This macro will create the default
runtime, enter the runtime and block on it. The macro will expand to:



13.4. async\await 77

1 let mut rt = tokio::runtime::Runtime::new().unwrap();
2 rt.enter(|| {
3 println!("in rt.enter()");
4 tokio::spawn(future::lazy(|_| println!("in tokio::spawn()")));
5 });
6 rt.spawn(future::lazy(|_| println!("in rt.spawn()")));
7 rt.block_on(future::lazy(|_| println!("in rt.block_on()")));

Listing 13.5: tokio macro expansion

In the following example, you will notice that async is the syntactic sugar to eliminate the
need for implementing Future . This will be evident when you compare the two "long
running functions". Notice that the first set of tasks runs sequentially and takes 4 seconds to
complete while the second set of identical tasks take 3 seconds to complete because they run
concurrently.

3 use std::error::Error;
4 use std::time::{Duration, Instant};
5 use std::thread;
6 use futures::future;
7 use futures::join;
8 use futures::try_join;
9 use tokio::macros::support::Future;
10
11 #[tokio::main]
12 async fn main() −> Result<(), Box<dyn Error>> {
13
14 // Sequential execution
15 let t1 = Instant::now();
16 let mut x1 = 100;
17 let r1 = long_running_fn_1(&mut x1).await;
18 let r2 = long_running_fn_2().await;
19 let t2 = Instant::now();
20 println!("{} {} {:?}",r1,r2,t2−t1);
21
22 let t1 = Instant::now();
23 let r = get_book_and_music().await;
24 let t2 = Instant::now();
25 println!("{:?} {:?}",r, t2−t1);
26
27
28
29
30
31
32
33 // Concurrent execution
34 let tasks = vec![



78 chapter 13. concurrency

35 tokio::spawn(async move { long_running_fn_1(&mut x1).await}),
36 tokio::spawn(async move { long_running_fn_2().await }),
37 // tokio::spawn(async move { long_running_fn_3().await }),
38 ];
39 // join the tasks
40 let t1 = Instant::now();
41 let r = futures::future::join_all(tasks).await;
42 let t2 = Instant::now();
43 println!("{:?} {:?}",r,t2−t1);
44 Ok(())
45 }
46
47 fn long_running_fn_1(x: &mut i32) −> impl Future<Output = i32> {

↪→ thread::sleep(Duration::from_secs(1));
48 *x = *x + 1;
49 thread::sleep(Duration::from_secs(1));
50 future::ready(*x)
51 }
52
53 async fn long_running_fn_2() −> i32 {
54 thread::sleep(Duration::from_secs(2));
55 42
56 }
57
58
59
60 async fn long_running_fn_3() −> Result<String, String> {
61 Ok("Hello".to_string())
62 }
63
64 async fn long_running_fn_4() −> Result<i32, String> {
65 Ok(100)
66 }
67
68
69 async fn get_book_and_music() −> Result<(String, i32), String> {
70 let tsk3_fut = long_running_fn_3();
71 let tsk4_fut = long_running_fn_4();
72 try_join!(tsk3_fut, tsk4_fut)
73 }

Listing 13.6: Async/Await example

Output:

1 101 42 4.00133155s
2 [Ok(102), Ok(42)] 3.002139593s



13.4. async/await 79

Another example:

2 use futures::future::try_join_all;
3 use reqwest::Client;
4 use serde_json::Value;
5 use std::{error::Error, time::Instant};
6
7 #[tokio::main]
8 async fn main() −> Result<(), Box<dyn Error>> {
9
10 let client = Client::builder().build()?;
11
12 // Start timing.
13 let now = Instant::now();
14
15 // Get values.
16 let mut gets = Vec::new();
17
18 // Default to few requests to be nice to jsonplaceholder.
19 for id in 1..3 {
20 let get = get_todo(&client, id);
21 gets.push(get);
22 }
23
24 let results = try_join_all(gets).await?;
25
26 // Report time and result.
27 println!("Elapsed: {} seconds", now.elapsed().as_secs_f64());
28 println!("Result: {:#?}", results.last().unwrap());
29 Ok(())
30 }
31
32 async fn get_todo(client: &Client, id: i32)
33 −> Result<Value, Box<dyn Error>> {
34
35 let base = "https://jsonplaceholder.typicode.com/todos";
36 let address = format!("{}/{}", base, id);
37 let result = client.get(&address).send().await?.json().await?;
38 Ok(result)
39 }

Listing 13.7: Async/Await example





chapter 14

APPLICATIONS

In this chapter, we will build applications leveraging everything that we have learned so far.
The code listings are adequately commented for you to follow the logic.

14.1 MULTI THREADEDWEB SERVER

2 use rust_server::ThreadPool;
3 use std::fs; // file system I/O
4 use std::io::prelude::*; // stream I/O
5 use std::net::{TcpListener, TcpStream};
6
7 fn main() {
8
9 // The bind function works like the new function,
10 // returns a new TcpListener instance. The bind function
11 // returns Result<T,E>, it will unwrap & stop on error.
12 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
13
14 // If we created a new thread for each request as it came in,
15 // someone making 10 million requests to our server could use up
16 // server resources. Limit the number of threads in the pool to a
17 // small number to protect us from DoS attacks. Each of the
18 // threads in the pool will pop off a long running request from
19 // this queue, handle the request, and then ask the queue for
20 // another request. Subsequent requests will back up in the
21 // queue. We will process 4 requests.
22 let pool = ThreadPool::new(4);
23
24 // The incoming method on TcpListener returns an iterator that
25 // gives us a sequence of TcpStreams. A single stream represents
26 // an open connection between the client & server. The TcpStream
27 // will read from itself to see what the client sent and then
28 // allow us to write the response to the stream. This ’for’ loop
29 // will process each connection in turn and produce a series of
30 // streams for us to handle.
31 for stream in listener.incoming().take(2) {
32 let stream = stream.unwrap();
33 pool.execute(|| {
34 handle_connection(stream);

81



82 chapter 14. applications

35 });
36 }
37 println!("Shutting down.");
38 }
39
40 fn handle_connection(mut stream: TcpStream) {
41 // mut on stream is required because it might read more data than
42 // asked for and save that data for the next time we ask for data.
43 let mut buffer = [0; 1024]; // big enough for now
44 stream.read(&mut buffer).unwrap(); // read from stream into buffer
45
46 let get = b"GET / HTTP/1.1\r\n";
47
48 let (status_line, filename) = if buffer.starts_with(get) {
49 ("HTTP/1.1 200 OK\r\n\r\n", "hello.html") // file at ../src
50 } else {
51 ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
52 };
53
54 let contents = fs::read_to_string(filename).unwrap();
55 let response = format!("{}{}", status_line, contents);
56
57 stream.write(response.as_bytes()).unwrap();
58 stream.flush().unwrap();
59 }

Listing 14.1: main.rs

2 use std::sync::{Arc,mpsc,Mutex};
3 use std::thread;
4
5 // struct ThreadPool
6 pub struct ThreadPool {
7 workers: Vec<Worker>, // vector of worker thread
8 sender: mpsc::Sender<Message>,
9 }
10
11 // Define the type for Job, note it is dyn,
12 // implements traits FnOnce & Send and lifetime is ’static
13 type Job = Box<dyn FnOnce() + Send + ’static>;
14
15 // enum
16 enum Message {
17 NewJob(Job),
18 Terminate,
19 }
20



14.1. multi threaded web server 83

21 impl ThreadPool {
22
23 pub fn new(size: usize) −> ThreadPool {
24 assert!(size > 0); // ’new’ function will panic if size is 0
25 let (sender, receiver) = mpsc::channel();
26
27 // Use Arc<Mutex<T>> so that thread−safe smart pointers share
28 // ownership across multiple threads and allow the threads
29 // to mutate the value. The Arc type will let multiple
30 // workers own the receiver, and Mutex will ensure that only
31 // one worker gets a job from the receiver at a time.
32 // In ThreadPool::new,the receiving end of the channel is put
33 // in an Arc (Atomically Reference Counted) and a Mutex.
34 let receiver = Arc::new(Mutex::new(receiver));
35
36 // Creat the vector
37 let mut workers = Vec::with_capacity(size);
38
39 // For each new worker, clone the Arc to bump the reference
40 // count so workers can share ownership of the receiving end.
41 for id in 0..size {
42 workers.push(Worker::new(id, Arc::clone(&receiver)));
43 }
44
45 // Expresson to be returned
46 ThreadPool { workers, sender }
47 }
48
49 // F type parameter has trait bound Send & lifetime bound ’static
50 // We use the () after FnOnce because FnOnce represents a
51 // closure that takes no parameters and returns the unit type ()
52 // Note: As in functions, the return type can be omitted from the
53 // signature, but even if we have no parameters,
54 // we still need the parentheses.
55 // ’Send’ is needed to transfer the closure from one thread to
56 // another and ’static because we do not know how long the thread
57 // will take to execute.
58 pub fn execute<F>(&self, f: F)
59 where F: FnOnce() + Send + ’static
60 {
61 // Create the job instance
62 let job = Box::new(f);
63 // Send the job
64 self.sender.send(Message::NewJob(job)).unwrap();
65 }
66 }



84 chapter 14. applications

67
68 // Implement Drop trait for ThreadPool
69 impl Drop for ThreadPool {
70
71 fn drop(&mut self) {
72
73 println!("Sending terminate message to all workers.");
74 for _ in &self.workers {
75 self.sender.send(Message::Terminate).unwrap();
76 }
77
78 for worker in &mut self.workers {
79 println!("Shutting down worker {}", worker.id);
80 if let Some(thread) = worker.thread.take() {
81 thread.join().unwrap();
82 }
83 }
84 }
85 }
86
87 // struct Worker
88 struct Worker {
89 id: usize,
90 thread: Option<thread::JoinHandle<()>>,
91 }
92
93 impl Worker {
94
95 fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Message>>>)

↪→ −> Worker {
96
97 // thread::spawn will create a new thread and run the
98 // code in the closure in the new thread.
99 // Closure to the loop, ask the receiving end of the channel
100 // for a job and run the job when it gets one.
101 let thread = thread::spawn( move || loop {
102 let message = receiver.lock().unwrap().recv().unwrap();
103 match message {
104 Message::NewJob(job) => {
105 println!("Worker {} got a job; executing.", id);
106 job();
107 }
108 Message::Terminate => {
109 println!("Worker {} was told to terminate.", id);
110 break;
111 }



14.2. database crud api 85

112 }
113 });
114
115 // Expression returned
116 Worker {
117 id,
118 thread: Some(thread),
119 }
120 }
121 }

Listing 14.2: lib.rs

14.2 DATABASE CRUD API

A simple example of connecting to a MySql DB and carry out insert and select operations.

2 use mysql::*;
3 use mysql::prelude::*;
4
5 #[derive(Debug, PartialEq, Eq)]
6 struct Tab {
7 co1: String,
8 co2: i32
9 }
10
11 pub fn crud() {
12
13 let pool = mysql::Pool::new("mysql://root:root@localhost:3306/tpl")
14 .unwrap();
15 let mut conn = pool.get_conn()
16 .unwrap();
17
18 let rows = vec![
19 Tab { co1: "hi".to_string(), co2: 2, },
20 Tab { co1: "hello".to_string(), co2: 4, },
21 ];
22
23 // Insert rows to tab table using raw string literals,
24 // do not process any escapes
25 conn.exec_batch(
26 r"INSERT INTO tpl.tab (co1, co2)
27 VALUES (:co1, :co2)",
28 rows.iter().map(|p| params! {
29 "co1" => String::from(&p.co1),
30 "co2" => p.co2,
31 })
32 ).unwrap();



86 chapter 14. applications

33
34 // Select
35 let selected_tab = conn.query_map(
36 "SELECT co1, co2 FROM tpl.tab",
37 | (co1, co2) | {
38 Tab { co1,co2 }
39 },
40 ).unwrap();
41
42 for r in selected_tab.iter() {
43 println!("{}: {}", r.co1, r.co2);
44 }
45 }

Listing 14.3: MySQL DB CRUD operations

14.3 ACTIX WEB FRAMEWORKWITH DIESEL

In this section we explore the actix-web web framework by writing a small CRUDAPI that
is backed by a Postgres database using Diesel . We begin by creating a Rust project named
actix-example

1 cargo init −−bin actix−example

The cargo.toml file is as follows:

1 [package]
2 name = "actix-example"

3 version = "0.1.0"

4 authors = ["Jaideep Ganguly <ganguly.jaideep@gmail.com>"]
5 edition = "2018"

6
7 [dependencies]
8 actix−rt = "1.0.0"

9 actix−service = "1.0.1"

10 actix−web = "2.0.0"

11 actix−web−httpauth = { git =
↪→ "https://github.com/actix/actix-web-httpauth" }

12
13 chrono = { version = "0.4.10", features = ["serde"] }
14
15 derive_more = "0.99.2"

16 diesel = { version = "1.4.2", features = ["postgres","uuidv07",
↪→ "r2d2", "chrono"] }

17 dotenv = "0.15.0"

18
19 futures = "0.3.1"

20



14.3. actix web framework with diesel 87

21 r2d2 = "0.8.8"

22
23 serde = "1.0"

24 serde_derive = "1.0"

25 serde_json = "1.0"

26
27 % alcoholic_jwt = "1.0.0"

28 reqwest = "0.9.22"

The main.rs file sets up the DB connection Pool and the HttpServer .

2 #[macro_use]
3 extern crate diesel;
4
5 use actix_web::{dev::ServiceRequest, web, App, Error, HttpServer};
6 use diesel::prelude::*;
7 use diesel::r2d2::{self, ConnectionManager};
8
9 mod handlers;
10 mod errors;
11 mod models;
12 mod schema;
13
14 pub type Pool = r2d2::Pool<ConnectionManager<PgConnection>>;
15
16 #[actix_rt::main]
17 async fn main() −> std::io::Result<()> {
18 dotenv::dotenv().ok();
19 std::env::set_var("RUST_LOG", "actix_web=debug");
20 let database_url = std::env::var("DATABASE_URL")
21 .expect("DATABASE_URL must be set");
22
23 // create db connection pool
24 let manager = ConnectionManager::<PgConnection>::new(database_url);
25 let pool: Pool = r2d2::Pool::builder()
26 .build(manager)
27 .expect("ERROR: Failed to create pool.");
28
29 // Start http server
30 HttpServer::new(move || {
31 App::new()
32 .data(pool.clone())
33 .route("/users", web::get().to(handlers::get_users))
34 .route("/users/{id}",

↪→ web::get().to(handlers::get_user_by_id))
35 .route("/users", web::post().to(handlers::add_user))
36 .route("/users/{id}",



88 chapter 14. applications

↪→ web::delete().to(handlers::delete_user))
37 })
38 .bind("127.0.0.1:8080")?
39 .run()
40 .await
41 }

Listing 14.4: main.rs

We will use .env to load our environment variables from.

1 DATABASE_URL=postgres://jganguly:root@localhost/actix_diesel_demo_db?sslmode=disable

Next we install Diesel with PostgreSQL specific configuration and set it up.

1 cargo install diesel_cli −−no−default−features −−features postgres
2 diesel setup

This command will generate the database named actix_diesel_demo_db if it does not exist.
Notice the new directory, migrations, that was created. Also notice a file called diesel.toml in
the project root directory, which should look like this:

1 # For documentation on how to configure this file,
2 # see diesel.rs/guides/configuring−diesel−cli
3 [print_schema]
4 file = "src/schema.rs"

The next step now is to add our migrations using the CLI:

1 diesel migration generate add_users

This will create a new directory in the migrations directory with two empty files in it. By
default, the directory will be named based on the current date and the name of the revision. In
our case, it is called date-id_add_users. The directory will have two empty files named up.sql
and down.sql. We will first edit up.sql to add SQL to create our table, and it should look like
this:

1 CREATE TABLE users (
2 id SERIAL NOT NULL PRIMARY KEY,
3 first_name TEXT NOT NULL,
4 last_name TEXT NOT NULL,
5 email TEXT NOT NULL,
6 created_at TIMESTAMP NOT NULL
7 );

The other file is used when diesel needs to reverse a migration. It should undo whatever we
do in up.sql. In our case, it simply removes the table:

1 DROP TABLE users;

We use different structures to represent input to the database, NewUser is usedwhile inserting
a user to the users table. In this case, the user id is automatically generated by the database.



14.3. actix web framework with diesel 89

The User struct is used to query a user from the database. Consequently, NewUser derives
Insertable and User derives Queryable.

2 use crate::schema::*;
3 use serde::{Deserialize, Serialize};
4
5 #[derive(Debug, Serialize, Deserialize, Queryable)]
6 pub struct User {
7 pub id: i32,
8 pub first_name: String,
9 pub last_name: String,
10 pub email: String,
11 pub created_at: chrono::NaiveDateTime,
12 }
13
14 #[derive(Insertable, Debug)]
15 #[table_name = "users"]
16 pub struct NewUser<’a> {
17 pub first_name: &’a str,
18 pub last_name: &’a str,
19 pub email: &’a str,
20 pub created_at: chrono::NaiveDateTime,
21 }

Listing 14.5: models.rs

Diesel can automatically generate the schema it needs in a file called schema.rs using the
following:

1 diesel print−schema > src/schema.rs

In this case, the schema file looks like this:

1 table! {
2 users (id) {
3 id −> Int4,
4 first_name −> Text,
5 last_name −> Text,
6 email −> Text,
7 created_at −> Timestamp,
8 }
9 }

handers.rs implements the functions defined in main.rs

2 use super::models::{NewUser, User};
3 use super::schema::users::dsl::*;
4 use super::Pool;
5 use crate::diesel::QueryDsl;
6 use crate::diesel::RunQueryDsl;



90 chapter 14. applications

7 use actix_web::{web, Error, HttpResponse};
8 use diesel::dsl::{delete, insert_into};
9 use serde::{Deserialize, Serialize};
10 use std::vec::Vec;
11
12 #[derive(Debug, Serialize, Deserialize)]
13 pub struct InputUser {
14 pub first_name: String,
15 pub last_name: String,
16 pub email: String,
17 }
18
19 // Handler for GET /users
20 pub async fn get_users(db: web::Data<Pool>)
21 −> Result<HttpResponse, Error> {
22
23 Ok(web::block(move || get_all_users(db))
24 .await
25 .map(|user| HttpResponse::Ok().json(user))
26 .map_err(|_| HttpResponse::InternalServerError())?)
27 }
28
29 fn get_all_users(pool: web::Data<Pool>)
30 −> Result<Vec<User>, diesel::result::Error> {
31
32 let conn = pool.get().unwrap();
33 let items = users.load::<User>(&conn)?;
34 Ok(items)
35 }
36
37 // Handler for GET /users/{id}
38 pub async fn get_user_by_id(db: web::Data<Pool>, user_id:

↪→ web::Path<i32>)
39 −> Result<HttpResponse, Error> {
40
41 Ok(
42 web::block(move || db_get_user_by_id(db, user_id.into_inner()))
43 .await
44 .map(|user| HttpResponse::Ok().json(user))
45 .map_err(|_| HttpResponse::InternalServerError())?,
46 )
47 }
48
49 // Handler for POST /users
50 pub async fn add_user( db: web::Data<Pool>, item: web::Json<InputUser>)
51 −> Result<HttpResponse, Error> {



14.3. actix web framework with diesel 91

52
53 Ok(web::block(move || add_single_user(db, item))
54 .await
55 .map(|user| HttpResponse::Created().json(user))
56 .map_err(|_| HttpResponse::InternalServerError())?)
57 }
58
59 // Handler for DELETE /users/{id}
60 pub async fn delete_user(db: web::Data<Pool>, user_id: web::Path<i32>)
61 −> Result<HttpResponse, Error> {
62
63 Ok(
64 web::block(move || delete_single_user(db,

↪→ user_id.into_inner()))
65 .await
66 .map(|user| HttpResponse::Ok().json(user))
67 .map_err(|_| HttpResponse::InternalServerError())?,
68 )
69 }
70
71 fn db_get_user_by_id(pool: web::Data<Pool>, user_id: i32)
72 −> Result<User, diesel::result::Error> {
73
74 let conn = pool.get().unwrap();
75 users.find(user_id).get_result::<User>(&conn)
76 }
77
78 fn add_single_user(db: web::Data<Pool>,item: web::Json<InputUser>)
79 −> Result<User, diesel::result::Error>
80 {
81 let conn = db.get().unwrap();
82 let new_user = NewUser {
83 first_name: &item.first_name,
84 last_name: &item.last_name,
85 email: &item.email,
86 created_at: chrono::Local::now().naive_local(),
87 };
88 let res = insert_into(users).values(&new_user).get_result(&conn)?;
89 Ok(res)
90 }
91
92 fn delete_single_user(db: web::Data<Pool>, user_id: i32)
93 −> Result<usize, diesel::result::Error>
94 {
95 let conn = db.get().unwrap();
96 let count = delete(users.find(user_id)).execute(&conn)?;



92 chapter 14. applications

97 Ok(count)
98 }

Listing 14.6: handlers.rs

Finally, errors.rs implements the functions for error handling.

2 use actix_web::{error::ResponseError, HttpResponse};
3 use derive_more::Display;
4
5 #[derive(Debug, Display)]
6 pub enum ServiceError {
7 #[display(fmt = "Internal Server Error")]
8 InternalServerError,
9
10 #[display(fmt = "BadRequest: {}", _0)]
11 BadRequest(String),
12
13 #[display(fmt = "JWKSFetchError")]
14 JWKSFetchError,
15 }
16
17 // impl ResponseError trait allows to convert our errors into
18 // http responses with appropriate data
19 impl ResponseError for ServiceError {
20 fn error_response(&self) −> HttpResponse {
21
22 match self {
23
24 ServiceError::InternalServerError => {
25 HttpResponse::InternalServerError().json("Internal

↪→ Server Error, Please try later")
26 }
27
28 ServiceError::BadRequest(ref message) =>

↪→ HttpResponse::BadRequest().json(message),
29
30 ServiceError::JWKSFetchError => {
31 HttpResponse::InternalServerError().json("Could not

↪→ fetch JWKS")
32 }
33 }
34 }
35 }

Listing 14.7: errors.rs

Having setup our application, navigate to the project directory in a terminal window. We will
then apply our database migration using the following command:



14.3. actix web framework with diesel 93

1 diesel migration run

Now we are ready to run our application using the following command:

1 cargo run

We should now be able to interact with this API again using curl in another terminal:

1 curl −v −H "Content-Type: application/json" −X POST −d
↪→ ’{"first_name": "foo1", "last_name": "bar1", "email":
↪→ "foo1@bar.com"}’ 127.0.0.1:8080/users





chapter 15

Useful Utilit ies

95





Bibliography

[1] Steve Klabnik and Carol Nichols, with contributions from the Rust Community, The Rust
Programming Language. https://doc.rust-lang.org/book, 2018.

[2] Abhishek Chanda, Build an API in Rust with JWT Authentication.

[3] Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, 2011.

[4] Alfred V. Aho, Monica S. Lam, Ravi Shethi , Jeffery D. Ullman, Compilers: Principles,
Techniques, and Tools. Prentice Hall, 2006.

[5] Kanglin Li, Mengqi Wu, Sybex, Effective Software Test Automation: Developing an Automated
Software Testing Tool. Sybex , 2004.

[6] Martin Odersky, The Scala Language Specification Version 2.9 PROGRAMMING METHODS
LABORATORY EPFL, SWITZERLAND, 2014.

97

https://auth0.com/blog/build-an-api-in-rust-with-jwt-authentication-using-actix-web/


98 bibliography


	Contents
	List of Tables
	List of Listings
	Preface
	WHY RUST?
	STATICALLY TYPED
	TYPE SAFETY
	RUNTIME
	PERFORMANCE

	GETTING STARTED
	INSTALLATION
	CREATING PROJECT WITH CARGO
	BUILD & RUN WITH CARGO
	CREATING A LIBRARY WITH CARGO
	PUBLISHING ON CRATES.IO

	BASIC CONCEPTS
	VARIABLES & MUTABILITY
	SHADOWING
	DATA TYPES
	SCALAR DATA TYPE
	INTEGER TYPE
	FLOATING-POINT TYPE
	BOOLEAN TYPE
	CHARACTER TYPE

	COMPOUND DATA TYPE
	TUPLE
	ARRAY

	FUNCTIONS
	CONTROL FLOW
	LOOPS
	GENERICS
	MACROS
	MODULES
	RUNNING TESTS
	DOCUMENTATION

	OWNERSHIP, BORROWING, REFERENCING & LIFETIME
	OWNERSHIP
	REASSIGNMENT
	CLONE
	REFERENCING OR BORROWING
	MUTABLE REFERENCE
	DANGLING REFERENCES
	SLICE TYPE
	LIFETIME
	STATIC


	STRUCT
	DEFINING A STRUCT
	INSTANTIATING STRUCTS
	FIELD INIT SHORTHAND
	STRUCT UPDATE

	TUPLE STRUCT
	UNIT STRUCT
	METHODS
	OWNERSHIP OF STRUCT DATA
	ASSOCIATED FUNCTIONS

	TRAIT
	INTRODUCTION TO TRAITS
	TRAIT BOUND
	TRAIT OBJECT

	ENUM & PATTERN MATCHING
	DEFINING AN ENUM
	STRUCT & ENUM
	OPTION ENUM
	MATCH STATEMENT
	IF LET STATEMENT

	COLLECTIONS
	VECTOR
	HASHMAP
	HASHSET

	ERROR HANDLING
	RECOVERABLE ERRORS

	INPUT & OUTPUT
	STANDARD I/O - READ & WRITE
	COMMAND LINE ARGS
	FILE I/O - READ & WRITE
	APPEND TO A FILE
	COPY A FILE
	DELETE A FILE

	CLOSURES 
	CLOSURES
	STORING CLOSURES WITH Fn TRAIT

	SMART POINTERS
	BOX
	CONS LIST

	DEREF TRAIT
	DROP TRAIT

	CONCURRENCY
	THREADS
	MESSAGE PASSING TO TRANSFER DATA BETWEEN THREADS
	CHANNELS & OWNERSHIP TRANSFERENCE

	SHARED STATE CONCURRENCY
	ASYNC/AWAIT

	APPLICATIONS
	MULTI THREADED WEB SERVER
	DATABASE CRUD API
	ACTIX WEB FRAMEWORK WITH DIESEL

	Useful Utilities
	Bibliography
	Index

