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Preface

The objective in this book is to provide a compact explanation of the fundamental results
in tensor theory and its application in differential geometry, engineering analysis and
relativity.

Jaideep Ganguly received his degrees of Doctor of Science and Master of Science from
the Massachusetts Institute of Technology. He had graduated from Indian Institute of
Technology, Kharagpur. During his graduate studies at MIT, he was exposed to tensors.
The motivation to write this book came from the desire to develop a comprehensive
content that is necessary to provide a rigorous exposure to the theory of tensor calculus
so that it can effectively applied in engineering analsysis and physics.
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chapter 1

INTRODUCTION

1.1 definition
Tensor calculus is concerned with a study of abstract quantities in geometry and physics
called tensor, whose properties and relations are independent of the coordinate frame.
A tensor is fully described if its components in any coordinate frame are given because,
by definition, a specific kind of transformation law is used to represent the tensor in
any other coordinate frame.

Thebeautyof tensor formulationof physical laws rests to a fair degree on twoconventions.
Consider the linear homogeneous function of the independent variables u1, u2 and u3
which can be expressed as,

a1u
1 + a2u

2 + a3u
3 ≡

3∑
m=1

amu
m

where ai is a constant and the superscript in ui are indices and not exponents and ≡
means equivalent or identical to. We can get rid of the

∑
notation and write:

a1u
1 + a2u

2 + a3u
3 ≡ amum

adopting the notation that a repeated lower case index m is to be summed from 1 to 3.
The repeated index is often called a dummy index as it is immaterial which letter of the
alphabet is used. Two additional rules are:

1. The dummy index will almost always appear once as a subscript and once as a
superscript

2. The same index cannot be used more than twice in the same term.

1.2 levi-civita symbol
The Levi-Civita symbols, named after the Italian mathematician Tullio Levi-Civita,
make working with determinants compact and simpler and hence the motivation to
study these symbols. In three dimensions, the Levi-Civita symbol, or the e symbol, is
defined by:

eijk =


+1 if i, j,k is an even permutation of 1, 2, 3
−1 if i, j,k is an odd permutation of 1, 2, 3
0 if i=j, j=k or k=i, i.e., any of the 2 labels is the same

1



2 chapter 1. introduction

Each time two numbers are switched, it is a permutation. An easy way to remember is
by referencing the following diagrams.

Figure 1.1 – e symbol sign is +ve when direction is clockwise.

Figure 1.2 – e symbol sign is -ve when direction is anti-clockwise.

eij =


+1 if i, j is clockwise
−1 if i, j is anticlockwise
0 if i=j

So, e123 = e231 = e312 = 1 and e132 = e321 = e213 = −1. Also, e113, e232, etc., are 0.

In 2 dimensions, the Levi-Civita symbol is given as: This is a 2 x 2 anti-symmetric
matrix. (

e11 e12
e21 e22

)
=

(
0 1
−1 0

)
In three dimensions, the Levi-Civita symbols can be represented in a 3 x 3 x 3 matrix.

1.3 linear transformation
Let us suppose that the variable ur are transformed into a new set of variables ũ
according to the following linear transformation.

ũr = arsu
s (1.3.1)

where ars are constants. Moreover, we assume that the determinant of the constants is
not zero, i.e.,

a ≡ |ars | ≡

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣
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1.3.1 determinant
In linear algebra, the determinant is a useful value that can be computed from the
elements of a square matrix. The determinant of a 3x3 square matrix A with elements
aij , given by a, is:

|A| = a =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣ = a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22)
Using the e symbol, we can express the right hand side in a compact format as follows.

3∑
i=1

3∑
j=1

3∑
k=1

emnpe1me
2
ne

3
p

Dropping the summation notation and making it implicit we have, what is known as
the Einstein notation,

a =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣∣ = emnpe1me2ne3p (1.3.2)

1.3.2 kronecker delta
The Kronecker delta, named after Leopold Kronecker, is defined as follows:

δij =

+1 if i = j
0 if i , j

The product of two Levi-Civita symbols can be expressed as a function of the Kronecker
delta δij as follows:

emnperst =

∣∣∣∣∣∣∣∣
δmr δms δmt
δnr δns δnt
δ
p
r δ

p
s δ

p
t

∣∣∣∣∣∣∣∣
For example, you can easily verify the following:

e123e123 = δ
1
1δ

2
2δ

3
3 = 1

Expanding the determinant, we have:

emnperst = δmr

∣∣∣∣∣∣ δns δnt
δ
p
s δ

p
t

∣∣∣∣∣∣− δms
∣∣∣∣∣∣ δnr δnt
δ
p
r δ

p
t

∣∣∣∣∣∣+ δmt
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣
Contracting by setting t =m, we have:

emnpersm = δmr

∣∣∣∣∣∣ δns δnm
δ
p
s δ

p
m

∣∣∣∣∣∣− δms
∣∣∣∣∣∣ δnr δnm
δ
p
r δ

p
m

∣∣∣∣∣∣+ δmm
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣∣∣∣∣∣∣ δns δnr
δ
p
s δ

p
r

∣∣∣∣∣∣−
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣+ δmm
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣
−
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣−
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣+3

∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣ =
∣∣∣∣∣∣ δnr δns
δ
p
r δ

p
s

∣∣∣∣∣∣



4 chapter 1. introduction

emnpersm = δnr δ
p
s − δ

p
r δ
n
s (1.3.3)

Contracting again by setting s = p, we have:
emnperpm = δnr δ

p
p − δ

p
r δ
n
p = 3δnr − δnr = 2δnr

i.e.,
emnperpm = 2δnr (1.3.4)

1.3.3 cofactor
Now consider the following determinant:

|A| =

∣∣∣∣∣∣∣∣
a11 a21 a31
a12 a22 a32
a13 a23 a33

∣∣∣∣∣∣∣∣ = emnp a1m a2n a3p
Define Amr as the cofactor of the element arm in the determinant. Note carefully the
reversed positions of m and r in arm and Amr . The cofactor of arm is obtained by deleting
this element and we have:

Amr = emnpa2na
3
p (1.3.5)

We can write the determinant as:
|A| = a11A

1
1 + a

2
1A

1
2 + a

3
1A

1
3 = a

r
1A

1
r

|A| = a12A
2
1 + a

2
2A

2
2 + a

3
2A

2
3 = a

s
2A

2
s

|A| = a13A
3
1 + a

2
3A

3
2 + a

3
3A

3
3 = a

t
3A

3
t

We can combine the two e symbols into a more compact form by defining a δ system as
follows:

δ
mnp
rst = emnperst (1.3.6)

The Kronecker delta is a member of this system. The value of the Kronecker delta such
as δmnrs = emners is:

δmnrs =


+1 if m,n and r,s are even permutations of the same numbers
−1 if m,n and r,s are odd permutations of the same numbers
0 if m,n and r,s are not permutations

For example,
δ2222 = 0 since indices are not permutations
δ1212 = 1 since indices are permutations of the same numbers
δ1221 = −1 since indices are opposite permutations of the same numbers

Equation ?? can then be written as:

Amr = emnpa2na
3
p =

1
2!
δ
mnp
rst a

s
na
t
p (1.3.7)

i.e.,
Amr =

1
2!
δ
mnp
rst a

s
ma

t
n (1.3.8)

If we solve the set of simultaneous equations in ??, we have the reverse transformation:
um = ãmr ũ

r (1.3.9)
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TENSORS

2.1 orthogonal cartesian system
The position of a point in three dimensional space can be determined by its coordi-
nates referred to in an orthogonal Cartesian system of axes. The general functional
transformation is given by:

xm = f m(y1, y2, y3) (2.1.1)

where:

1. ym are orthogonal Cartesian coordinates
2. xm are general curvilinear coordinates
3. f m are single valued functions of y1, y2 and y3

Henceforth, we will use ym to denote Cartesian coordinates and xm to denote curvilinear
coordinates.

2.2 curvilinear coordinate system
In order for the transformation to be reversible, it is necessary for the determinant to be
non-zero, i.e.: ∣∣∣∣∣∂xr∂ys

∣∣∣∣∣ ≡ emnp ∂x1∂ym
∂x2

∂yn
∂x3

∂yp
, 0 (2.2.1)

The above equation can be solved to yield:

ym = hm(x1,x2,x3) (2.2.2)

In equation ??, hm represents single valued functions of x1,x2,x3. The surfaces denoted
by x1 = constant, x2 = constant and x3 = constant are called coordinate surfaces. The
intersection of these coordinate surfaces with one another are called coordinate curves.
At each point in space, there are 3 intersecting curves. In general, these curves are
not straight lines and hence they are called curvilinear coordinates. Since the similar
relations must hold for another curvilinear system l̃r , we can write:

x̃r = l̃r(x1,x2,x3) (2.2.3)

and,
xr = lr(x̃1, x̃2, x̃3) (2.2.4)

Substituting equation ?? into equation ??, we have:

xr = lr(l̃1, l̃2, l̃3) (2.2.5)

5



6 chapter 2. tensors

The partial derivative of the above equation w.r.t. xs yields:

∂xr

∂xs
=
∂lr

∂l̃m
∂l̃m

∂xs
≡ ∂xr

∂x̃m
∂x̃m

∂xs
(2.2.6)

Since the three curvilinear coordinates represented by xr are independent, it means that
when r , s, the above equation must equate to zero. For example, clearly:

∂x1

∂x2
= 0

and,
∂x1

∂x1
= 1

The above can be summarized as:
∂xr

∂x̃m
∂x̃m

∂xs
= δrs (2.2.7)

where δrs is the Kronecker delta.

Similarly, we can write:
∂x̃r

∂x̃m
∂xm

∂x̃s
= δrs (2.2.8)

2.3 tensor and tensor calculus
A tensor is a mathematical object whose properties and relations are independent of the
coordinate frame. A tensor is fully described if its components are given in a particular
coordinate frame and specific transformation laws are defined to represent the tensor in
any other coordinate frame.

Calculus deals with change, tensor calculus simply deals with how tensors change.
Tensor and tensor calculus provide a natural and concise mathematical framework for
formulating and solving problems in areas of physics and engineering such as elasticity,
fluid mechanics and general relativity.

2.4 tensor of order zero
In this book, the words tensor and system are used interchangeably. A system of order
zero, i.e., a single number is termed a scalar quantity. Such a quantity, by definition,
has the same value regardless of the coordinate system used. This means:

f (x1,x2,x3) ≡ g(x̃1, x̃2, x̃3) (2.4.1)
If the coordinate transformation law is represented by:

xr = xr(x̃1, x̃2, x̃3) (2.4.2)
then f is invariant if:

f [x1(x̃1, x̃2, x̃3),x2(x̃1, x̃2, x̃3),x3(x̃1, x̃2, x̃3)] = f (x1,x2,x3) (2.4.3)

Examples of scalar quantities are familiar entities such as energy, length of a line element
and σmm = δ11 + δ

2
2 + δ

2
3 = 3.
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2.5 contravariant tensor of order one - contravari-
ant vector

Consider a system of order one such as differential elements of length dx1, dx2 and dx3.
In the new coordinate frame the differentials are related to the original frame by:

dx̃m =
∂x̃m

∂xr
dxr

Functions that transform in this manner are called contravariant tensors of order one or
contravariant vectors. Quantities which bear a single superscript are contravariant
vectors and they obey the transformation law given by:

ãm(x̃1, x̃2, x̃3) =
∂x̃m

∂xn
ar(x1,x2,x3) (2.5.1)

The functions am are said to be the components of a contravariant tensor of order one if
they transform according to equation ??.

From the above equation, we have:

∂xn

∂x̃m
ãm =

∂xn

∂x̃m
∂x̃m

∂xr
ar = δnr a

r = an

We thus have the inverse transformation:

an(x1,x2,x3) =
∂xn

∂x̃m
am(x̃1, x̃2, x̃3) (2.5.2)

2.6 covariant tensor of order one - covariant
vector

There is another way in which the components of a system of order one can transform.
For example, consider the partial derivatives, ∂f

∂xn of a scalar f (xm). Such a system
arises in connection with the notion of a gradient of a potential function. The induced
transformation law for these partial derivatives, subject to the coordinate transformation
as defined in equation ?? is computed according to the rule for composite functions as:

∂f

∂x̃m
=
∂f

∂xn
∂xr

∂x̃m

or,
∂f

∂x̃m
=
∂xr

∂x̃m
∂f

∂xn
(2.6.1)

Functions which transform according to equation ?? are called covariant tensors of
order one or covariant vectors. The components of a covariant vector are identified
by a single subscript and the transformation law is written as:

ãm(x̃
1, x̃2, x̃3) =

∂xn

∂x̃m
an(x

1,x2,x3) (2.6.2)
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The functions, am, are called the covariant components of a covariant tensor.

Note carefully the difference in the manner of transformation between the contravariant
components and covariant components. An useful aid in remembering the two
transformation laws is to keep in mind that differentials dxm are contravariant in
character and that the gradients ∂f

∂xm are covariant.

2.7 tensors of the second order
A simple way to form a second order system is to multiply two tensors of first order
together. Since we have defined both contravariant there are three kinds of products
which can be obtained. First by if bm and cn are the components of two contravariant
tensors, then the product bmcn is a contravariant tensor of order two and such a tensor
will be denoted by two superscripts.

amn = bmcn

The transformation law is given by:

ãmn(x̃1, x̃2, x̃3) =
∂x̃m

∂xn
bn
∂x̃n

∂xs
cs

i.e.,
ãmn(x̃1, x̃2, x̃3) =

∂x̃m

∂xr
∂x̃r

∂xs
ars(x1,x2,x3) (2.7.1)

Systems which transform according to above equation known as contravariant ten-
sors of the second order. A familiar example is the stress tensor. Secondly, if bm and
cn are the components of two covariant tensors, then the product bmcn is a covariant
tensor of order two and will be denoted by two subscripts.

amn = bmcn

The transformation law for amn is given by:

ãmn(x̃
1, x̃2, x̃3) =

∂xr

∂x̃m
∂xs

∂x̃n
ars(x

1,x2,x3) (2.7.2)

Systems which transform according to the above equation are known as covariant
tensors of the second order. A familiar example is the strain tensor.

If bm and cm are contravariant and covariant, respectively, then the product bm and cn is
a mixed tensor of order two and is denoted by one superscript and one subscript.

amn = bmcn

amn transform as below:

ãmn (x̃
1, x̃2, x̃3) =

∂x̃m

∂xr
∂xs

∂x̃n
ars(x

1,x2,x3) (2.7.3)

Systems which transform according to the above equation are known as mixed
tensors of the second order. Note that the superscript transforms like a contravariant
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vector and the subscript transforms like a covariant vector. An example of the mixed
second order tensor is the Kronecker delta σmn

δ̃mn =
∂x̃m

∂xr
∂xs

∂x̃n
δrs =

∂x̃m

∂xr
∂xr

∂x̃n
= δmn (2.7.4)

We will always use superscripts to denote contravariant behavior and subscripts to
denote covariant behavior. In the above, the second-order tensors have been created by
multiplication in order to demonstrate the transformation laws. However, second order
tensors are not necessarily formed by multiplications since the only requirement is that
the system obey the equations ??, ?? or ??.

2.8 higher order tensors
Tensors of higher order can be treated by extending the line of reasoning described in
the previous section. The important feature is the form of the transformation law. For
example, a third order mixed tensor is one which obeys the transformation law.

arsr(x̃
1, x̃2, x̃3) =

∂x̃r

∂xm
∂xn

∂x̃s
∂xp

∂x̃t
amnp(x

1,x2,x3)

Such a tensor is said to be contravariant to the first order and covariant to the second
order. The transformation law for tensors of still higher order follow the same pattern.

2.9 properties of tensors
The components of a tensor in the new variables, x̃r are linear combinations of the
variables xr . Consequently, if all the components a tensor vanish in any particular
coordinate system, then they vanish in all coordinate systems. Or, if the components
are zero at some particular point, then they are zero at this same point for all coordinate
systems. This is an extremely important property of tensors.

2.10 symmetry and skew-symmetry
The positional order of the indices in a tensor is important. Thus the component amn is
not necessarily the same as component anm. This is clearly seen if the tensor system
amn is written out in matrix form and we will see that anm is the transpose of amn. If it
turns out that they are the same, then it means that the tensor is symmetric. Also, it is
trivial to prove by a simple application of the summation notation that the symmetrical
properties of a tensor are unchanged if new coordinates are used. Furthermore, it is
generally not meaningful to define symmetry with respect to two indices one of which
is contravariant and the other is covariant. A completely symmetric third order tensor
must satisfy the relations:

amnp = anmp = apmn = apnm = anpm = ampn

A tensor amn is said to be skew-symmetric if the interchange of indices alters the sign
of the component but not its magnitude. A completely skew-symmetric system of the
third order must satisfy the relations:

amnp = −anmp = anpm = −ampn = apmn = −apnm
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2.11 addition, subtraction and multiplication of
tensors

The algebraic operations of addition and subtraction applied to tensors can have
meaning if and only if the tensors which are added or subtracted are of the same order
and type. Thus, it is meaningless to consider the addition of am and bmn or am and bn.
If we have two triple systems arst and brst then we can define a new system crst as:

crst = a
r
st + b

r
st

or
brst = c

r
st − arst

We have already used the operation of multiplication on two tensors earlier. Thus if ars
is a second order system and brmn is a third order system, then a fifth order system can
be formed by multiplying each component or either system by every component of the
other system to yield:

crtsmn = a
r
sb
t
mn

This type of multiplication is called outer multiplication and the resulting tensor is
called the outer product of ars and btmn. The familiar vector or cross product of vector
analysis is outer multiplication applied to two first order tensors. An important point
to remember is that this process of the multiplication of two tensors produces another
tensor.

2.12 inner multiplication - contraction of ten-
sors

The process of multiplication and contraction can be combined in an algebraic operation
called inner multiplication. From the tensors ars and btnm we can obtain the following
tensor:

f tsn = a
m
s b

t
nm

which is called the inner product. If the contraction process is applied until there is no
longer any free indices, then the resulting tensor is an invariant or tensor of zero order.

2.13 quotient law
It is of great importance to be able to recognize a tensor without having to show
directly that the tensor transformation law is satisfied since a direct verification may
be inconvenient or very difficult. The quotient law is the means by which this can be
accomplished. The quotient law is stated as follows. Given the following relation:

a(r, s, t)birs = c
i
t

then a(r, s, t) has to be represented by the tensor arst . The proof is easy to demonstrate
by showing that arst follows the transformation law.
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GEOMETRICAL
REPRESENTATION OF TENSORS

3.1 fundamental or the metric tensor
In a three dimensional Euclidean space, the element of length or the line element will
be denoted by ds and is the distance between neighboring points x and x+ dx.

(ds)2 = (dy1)2 + (dy2)2 + (dy3)2 =
3∑
r=1

dyrdyr

Note that the summation convention does not apply to repeated superscripts or
subscripts and and hence summing on r must be specified by the summation sign. The
differentials are contravariant vectors and thus:

dyr =
∂yr

∂xm
dxm

where xm are general curvilinear coordinates. Hence, we obtain for the line element:

(ds)2 =
3∑
r=1

∂yr

∂xm
∂yr

∂xn
dxmdxn

We now define the fundamental tensor or themetric tensor as:

gmn =
3∑
r=1

∂yr

∂xm
∂yr

∂xn
(3.1.1)

Hence,
(ds)2 = gmndx

mdxn

Since the line element, i.e., the distance between two neighboring points is invariant,
using the Quotient Law we can deduce that gmn is a covariant tensor of the second order.
Further, equation ?? indicates that gmn is symmetric. Note, also, in a Euclidean space
that (ds)2 is positive-definite, i.e., it is zero only if dx1 = dx2 = 0; otherwise it is always
positive.

Let Ĝmn be the cofactor of the element gmn in the determinant formed by the components
of the metric tensor. From the theory of determinants we have the following results:

g = |gmn| =
1
3!
erstemnpgrmgsngrp

Ĝmn =
1
2!
empqenrsgprgqs

11
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gmnĜ
mp = gnmĜ

pm = gδpn
Setting:

gmp =
Ĝmp

g
(3.1.2)

we have:
gmng

mp = δpn (3.1.3)
The contravariant system denoted by gmp is called the contravariant metric tensor a
second order contravariant tensor. The relation between gmn and gmn as shown in
equation ?? is said to be reciprocal and tensors which obey such a relation are called
conjugate tensors.

3.2 magnitude of a first order tensor
The contracted tensor product denoted by gmnaman is a scalar quantity where am is a
contravariant vector in the coordinate system xr and gmn is a covariant vector in the
same coordinate system. Using the appropriate transformation law we can write:

g̃mnã
mãn = ∂xp

∂x̃m
∂xq

∂x̃n
∂x̃m

∂xr
∂x̃n

∂xs

= δ
p
r δ
q
s gpqa

ras

Hence,
g̃mnã

mãn = gpqa
paq (3.2.1)

This demonstrates that the quantity gpqapaq is indeed a scalar or invariant. The square
root of this quantity is called the magnitude or length of the tensor.

|a| = (gmna
man)

1
2 (3.2.2)

In a rectangular coordinate system, the components of the fundamental tensor are all
equal to unity and the length of a tensor in rectangular Cartesian coordinates is given
by:

|a| =
3∑
r=1

am(y1, y2, y3)am(y1, y2, y3)

For this special case, the am(y1, y2, y3) are the rectangular components of the tensor. If
the am are such that the magnitude is unity, i.e., it is a unit vector, then:

gmna
man = 1

3.3 associated tensors - rais ing and lowering of
indices

The existence of the fundamental metric gmn and gmn permits us to generate new tensors
by the process of in a modification. For example the inner multiplication of arstp with
either the contravariant or covariant metric tensor yields a tensor which is said to be
associated with arstp. Thus we can have:

gmtarstp = a
mrs
.p
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This process of inner multiplication is more descriptively known as the process of
lowering or raising the indices. In order to indicate clearly which index has been
removed, a dot is placed in the space which has been vacated. A dot is also necessary
as in general ar.s is not the same as a.sr as can be seen from the example below:

ar.s = g
rmamsa

r
.r = g

smarm

However, it is evident that if ams is symmetric, then ar.sis equal to to a.sr . For example:

ars = armgsnamn

All of the tensors constructed by inner multiplication with the fundamental metric
tensors are said to be associated to the given tensor. Geometrically, as associated tensors
can be interpreted as representing the same tensor in different coordinates reference
frames. There are two special cases of interest:

1. A dummy index can be raised from its lower position and lowered from its upper
position without altering the value of the term. For example: amsbs = asm.bs

2. A free index in a tensor equation can be raised or lowered wherever it occurs to
yield an equivalent equation. For example:

arst = b
p
rsctp

can be operated as follows:
grmarst = g

rmb
p
rsctp

to yield:
am.st = b

mp
.s ctp

3.4 base vectors
In this section wewill interpret some of the results obtained thus far in terms of ordinary
vector analysis. This will enable us to easily draw pictures of some of our results. It
turns out that a judicious combination of vector analysis and tensor analysis is optimal
to get the desired results.

Let us recall that yi denotes orthogonal Cartesian coordinates and xi denotes general
curvilinear coordinates. A bar will be used to denote vectors in the ordinary sense of
the word. Let r̄(x1,x2,x3) denote the position vector to a point p from point 0 which
is the origin of the yi coordinate frame and let r + dr denote the position vector to a
neighboring point q. The rectangular Cartesian components of r are y1, y2, y3 and this
is written as:

r = ynin

where in are the unit vectors associated with the yn coordinate system. The transfor-
mation equations from the rectangular cartesian coordinates to the general curvilinear
coordinates are given by:

xm = xm(y1, y2, y3)

The differential of the position vector, i.e., the vector connecting p to q is:

dr =
∂r
∂xm

dxm
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Figure 3.1 – Euclidean and Curvilinear Space.

and the square of the line element s:

(ds)2 = dr.dr =
∂r
xm

∂r
∂xn

dxmdxn

where ds is the length of the vector joining p to q. The dot, as in common usage, between
two vectors signifies the scalar product.

3.5 fundamental metric tensor
Comparing equation ?? with equation ?? yields the following vector formula for the
fundamental metric tensor.

gmn =
∂r
∂xm

∂r
∂xn

Geometrically, the vector ∂r
∂xm is a vector which is directed tangentially to the xm

coordinate curve. Such a vector is called a base vector and will be denoted by gm:

gm =
∂r
∂xm

These are three independent base vectors in Euclidean space and all other vectors in
this space can be expressed as a linear combination of three independent base vectors.
The components of the fundamental metric tensor are now seen to be the scalar product
of the base vectors.

gmn = gm · gn (3.5.1)
Also, equation ?? can be written as:

dr = dxmgm (3.5.2)
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Figure 3.2 – Orthogonality of Vectors.

In orthogonal Cartesian coordinates, this becomes:

dr = dymim (3.5.3)

where the im are the base vectors associated with orthogonal Cartesian coordinates. We
recall that the im are unit vectors which are constant throughout Euclidean space. On
substitution of the transformation equation for dym in equation ??we have:

dr =
∂ym

∂xn
dxnim (3.5.4)

Comparing equation ?? with equation ?? yields, since dxm is arbitrary, the following
transformation law for base vectors:

gm(x
1,x2,x3) =

∂yn

∂xm
in (3.5.5)

The relation given by equation ?? is of the same form as the covariant transformation
law which governs the first order covariant tensors. In order to ascribe a geometrical
meaning to the contravariant fundamental metric tensor, gmn, we proceed by first
defining a set of contravariant base vectors gnas below:

gm · g
n = δnm (3.5.6)

So,

g1 · g
1 = 1

g2 · g
1 = 0

g3 · g
1 = 0
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Figure 3.3 – Euclidean and Curvilinear Space.

Since g1 is perpendicular to both g2 and g3, we can write:

g1 = λg2 × g3 (3.5.7)

where x denotes the operation of vector multiplication and λ is a scalar which is
determined by taking the scalar product of equation ??with g1.

λ =
1

g1 · g2 × g3
We can then write:

g1 =
g2 × g3√

g

g2 =
g3 × g1√

g

g3 =
g1 × g2√

g

where √g is the triple scalar product given by:
√
g ≡ g1 · g2 × g3

Similarly, the covariant base vectors can be expressed in terms of the contravariant base
vectors as follows:

g1 =
√
g(g2 × g3)

g2 =
√
g(g3 × g1)

g3 =
√
g(g1 × g2)
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where,
1
√
g
= g1 · g2 × g3

We can then easily show:

(g2 × g3) · (g
2 × g3) =

∣∣∣∣∣1 0
0 1

∣∣∣∣∣ = 1

because:
g1 · g

1 = 1

The differential of the position vector dr can be expressed in terms of the contravariant
base vectors as:

dr = dxmg
m

where dxm are the appropriate covariant components of dr. The line element can also
be written in terms of the covariant metric tensor as follows:

(ds)2 = dr · dr = gm · gndxmdxn = gmndxmdxn
Hence, the components of the contravariant metric tensor are seen to be the scalar
product of the contravariant base vectors.

gmn = gm · gn (3.5.8)

If the curvilinear coordinates have the very desirable feature of being orthogonal, then
the results of this section become greatly simplified. The orthogonality feature means
that the base vectors gm are mutually orthogonal and hence the fundamental metric
tensor becomes:

gmn =

∣∣∣∣∣∣∣∣
g11 0 0
0 g22 0
0 0 g33

∣∣∣∣∣∣∣∣ = 1

and the determinant g has the value:

g = g11g22g33

The vector product g2 × g3 in these special circumstances will result in a vector parallel
to g1 and hence the contravariant base vectors become:

g1 =
g1
g11

g2 =
g2
g22

g3 =
g3
g33

The contravariant metric tensor will then assume the form:

gmn =

∣∣∣∣∣∣∣∣∣
1
g11

0 0
0 1

g22
0

0 0 1
g33

∣∣∣∣∣∣∣∣∣
Each set of the three contravariant and covariant base vectors are linearly independent
and hence non co-planar.
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3.6 geometrical representation of first order ten-
sors

It can be shown that any vector ā can be resolved into three linearly independent
components which are directed along the covariant base vectors, i.e.,

a = amḡm (3.6.1)

The familiar scheme of resolving a vector into rectangular Cartesian components is a
special case of equation ??wherein the base vectors are the unit vectors im associated
with the ym coordinate system. The am quantities defined in equation ?? can be

Figure 3.4 – Components of contravariant tensor.

considered as the components of the contravariant tensor and hence can be called the
contravariant components of the vector a . The magnitude of a is given by the scalar
product, i.e.,

|a| = [amgm · angn]
1
2 = [aman gm · gn]

1
2 = [aman gmn]

1
2 (3.6.2)

The above equation is the same as ??. In other words, the contravariant tensor of the
first order denoted by the tensor symbol, am, designates exactly the same entity denoted
by the symbol, ā, which represents the vector in the usage of ordinary vector analysis.
Thus, a one to one correspondence between much of the vector analysis and tensor
analysis has been and can be established.

It is important to observe that the am quantities, which we have called the components
of the contravariant tensor, are not the usual components of the ordinary vector analysis.
This means that the tensor components, am, will generally not possess the proper
dimensions of the quantity being represented, and further, the different components
will have different dimensions. The components which are dimensionally correct are
called the physical components in contradistinction to the tensor components. Thus
the physical components of ā are the lengths of the parallelepiped which encloses ā.
For example, the physical component of āwhich is directly along the g1 direction is:

|a1ḡ1| = [a1g1 · a1g1]
1
2 = a1

√
g11
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whereas the tensor component is merely a1. In general, the physical component of
the rth component of a contravariant tensor of the first order is given by the following
relation.

|ar ḡr | = ar
√
grr Note: no sum over r

where grr (no sum) is a component of the fundamental metric tensor.

grr = ḡr · ḡr Note: no sum over r

Amore meaningful representation of the connection between the physical and tensor
components is arrived at by recalling that in elementary vector analysis, a vector is
resolved into components parallel to unit tangent vectors. The unit tangent vectors are
simply obtained by dividing the base vector ḡm by its length gmm (no sum), i.e.,

tm =
ḡm√
gmm

(no sum)

Hence, equation ?? can be written as:

ā =
√
g11a

1
(
ḡ1√
g11

)
+
√
g22a

2
(
ḡ2√
g22

)
+
√
g33a

3
(
ḡ3√
g33

)
The three terms enclosed in parenthesis are unit tangent vectors t1, t2 and t3.

The vector ā, which has been expressed as a linear combination of the covariant base
vectors in equation ?? can also be expressed as a linear combination of the contravariant
base vectors as:

ā = amḡ
m (3.6.3)

where a1, a2 and a3 are the covariant components of the vector ā. These covariant
components can be interpreted as the edges of a parallelepiped, as in the case of
contravariant components. There is another useful interpretation of the which can be
given to the covariant components of a vector. If we form the scalar product of equation
??with the covariant base vector ḡ1, we have:

ḡ1 · ā = amḡ1ḡm = amδ
m
1 = a1 (3.6.4)

The scalar product of ḡ1 · ā is interpreted in vector analysis as the product of the
orthogonal projection of ā onto the direction of ḡ1 and the length |ḡ1|. By definition, the
scalar product is:

ḡ1 · ā1 = |ḡ1||ā|cosθ (3.6.5)

where θ is the angle between ḡ1 and ā. By combining equations ?? and ??, we can
see that a1√

g11
is the orthogonal projection of the vector ā onto the direction of ḡ1. This

result, when generalized, reveals another geometrical representation of the covariant
components of a first order tensor, namely that am

gmm
(no sum) of a vector ā is the length of

the orthogonal projection of the vector ā onto the tangent to the xm coordinate curve at
the point p (see figure ??). The vector ā has been represented in two different coordinate
frames, refer equations ?? and ??. Hence,

ā = amḡm = amḡ
m (3.6.6)
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Figure 3.5 – Components of covariant tensor.

The scalar product of equation ??with ḡn yields,

ḡn · amḡm = ḡn · amḡm

i.e.,
gnma

m = δnmam = an

Thus, the tensor process of lowering an index by contraction with the fundamental
metric tensor has an equivalent operation in ordinary vector analysis. This equivalent
operation is the formation of the scalar product with the covariant base vector. Similarly,
the scalar product of equation ??with gn yields,

ḡn · amḡm = ḡn · amḡm

gnmam = an

The operation is equivalent to raising an index is the formation of the scalar product
with the contravariant base vector.

It should be observed that the quantities obtained by lowering the index in am are
precisely the covariant components am. Geometrically, am and am are seen to represent
the same vector in two base systems which are different but nonetheless related. If the
base vectors gm are orthogonal and of unit length, i.e., the base vectors of a rectangular
Cartesian frame.

It has been shown in equation ?? that the scalar quantity represented in tensor analysis
by gmnaman is proportional to the length of the vector ā. The scalar product of two
vectors has also its counterpart in tensor analysis. Let b̄ and c̄ be two vectors with tensor
components given by,

b̄ = bmḡm

and
c̄ = cnḡn

Then, the scalar product of these two vectors yields,

b̄ · c̄ = gmnbmcn (3.6.7)
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The quantity gmnbmcn, which is a scalar because there are no free indices, is therefore
precisely the scalar product of ordinary vector analysis.

Finally, let us consider the angle between the vectors b̄ and c̄. This angle can be calculated
by the formula:

cosθ =
b̄ · c̄
|b| |c|

(3.6.8)

By substituting equation ?? into the numerator of equation ?? and leveraging equation
?? into the denominator, the tensor formula for θ is obtained.

cosθ =
gmnb

mcn

gmnbmbngprcpcr
(3.6.9)

Equation ?? demonstrates that the scalar quantity gmnbmcn is proportional to the angle
between the contravariant tensors of the first order bm and cn.
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TENSOR CALCULUS

4.1 christoffel symbols
We will find that the equations involving the first derivatives of the fundamental metric
tensor become simpler in form with the introduction of the following two symbols.

[mn,p] =
1
2

(
∂gnp
∂xm

+
∂gmp
∂xn

−
∂gmn
∂xp

)
(4.1.1)

Γ kmn = g
kp[mn,p] (4.1.2)

The symbols described by equation ?? and ?? are called Christoffel symbols of the
first and second kind. Although, these two symbols are not tensors, the summation
convention applied to a superscript which is repeated as a subscript has been retained.
This means that the indices in the Christoffel symbol of the first kind are to be regarded
as subscriptswhereas there are one superscript and two subscripts in Christoffel symbols
of the second kind. We can write:

glkΓ
k
mn = glkg

kr[m,r] = δrl [mn,r] = [mn,l] (4.1.3)

Also, it is easily verified that,

∂gmp
∂xn

= [mn,p] + [pn,m] (4.1.4)

which can also be put in the form:

∂gmp
∂xn

= −grpΓ rmn − grmΓ rpn (4.1.5)

Differentiating equation ??with respect to xl , there results,

gmn
∂gmp

∂xl
+ gmp

∂gmm
∂xl

= 0 (4.1.6)

The inner product of equation ??with gnr yields,

∂grn

∂xl
= −gpmΓ rml − g

nrΓ
p
kl (4.1.7)

Next the transformation laws for the Christoffel symbols will be determined. We
proceed by differentiating with respect to a second coordinate frame, x̃r , the equation,

g̃pq =
∂xm

∂x̃p
∂xn

∂x̃q
gmn (4.1.8)

23
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to obtain,
∂g̃pq
∂x̃r

=
∂gmn
∂xk

∂xm

∂x̃p
∂xn

∂x̃q
∂xk

∂x̃r
+ gmn

(
∂xm

∂x̃p
∂2xn

∂x̃qx̃r
+
∂xn

∂x̃q
∂2xm

∂x̃px̃r

)
(4.1.9)

where the tilde over the metric tensor, g̃pq, indicates the independent variables are x̃1,
x̃2, x̃3. By suitably interchanging the free and dummy indices in equation ??, there will
appear two additional equations of the same type.

∂g̃rq
∂x̃q

=
∂gkj
∂xi

∂xi

∂x̃p
∂xj

∂x̃q
∂xk

∂x̃r
+ gij

(
∂xi

∂x̃r
∂2xj

∂x̃qx̃p
+
∂xj

∂x̃q
∂2xi

∂x̃px̃r

)
(4.1.10)

∂g̃pr
∂x̃q

=
∂gik
∂xj

∂xi

∂x̃p
∂xj

∂x̃q
∂xk

∂x̃r
+ gij

(
∂xi

∂x̃r
∂2xj

∂x̃qx̃r
+
∂xj

∂x̃r
∂2xi

∂x̃px̃q

)
(4.1.11)

Now if equation ?? is subtracted from the sum of equations ?? and ??, and the Christoffel
symbol of the first kind is introduced, there results,

[p̃q, r] = [ij,k]
∂xi

∂x̃p
∂xj

∂x̃q
∂xk

∂x̃r
+ gij

∂xi

∂x̃r
∂2xj

∂x̃px̃q
(4.1.12)

where the tilde over the Christoffel symbol indicates that the independent variables
are x̃1, x̃2, x̃3. This is the transformation law for Christoffel symbol of the first kind. It
is evident that the system represented by [mn,p] is not a tensor unless the coordinate
transformation is such as to make the second term of equation ?? vanish.

To obtain the transformation law for the Christoffel symbol of the second kind we first
write the transformation law for the contravariant tensor.

g̃rm = ghl
∂x̃r

∂xh
∂x̃m

∂xl
(4.1.13)

Next, the left and right hand sides of equation ?? by the left and right sides of equation
?? respectively, and summed on r.
introduction of the Christoffel symbol of the second kind.

Γ m̃pq = g
hl[ij,k]

∂xi

∂xp
∂xj

∂xq
δkl
∂x̃m

∂xh
+ ghlgijδ

i
l
∂x̃m

∂xn
∂2x̃j

∂x̃p∂x̃q
(4.1.14)

which becomes
Γ m̃pq = Γ hij =

∂xi

∂x̃p
∂xj

∂x̃q
∂x̃m

∂xh
+
∂x̃m

∂xh
∂2x̃h

∂x̃p∂x̃q
(4.1.15)

This indicates that the Christoffel symbol of the second kind is not a tensor unless the
coordinate transformation is such that the second term of equation ?? vanishes.

A formula for the transformation law of the mixed second derivatives can be obtained
by multiplying equation ?? by ∂xs

∂x̃m and summing on m. The formula is:

∂2xs

∂x̃p∂x̃q
= Γ m̃pq

∂xs

∂x̃m
− Γ s̃ij

∂xi

∂x̃p
∂xj

∂x̃q
(4.1.16)

It will be informative and useful to derive the vector formulae for Christoffel symbols.
To this end we differentiate equation ?? to obtain

∂gmn
∂xp

=
∂ḡm
∂x̃p
· ḡn +

∂ḡn
∂x̃p
· ḡm (4.1.17)
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Since the order of differentiation is unimportant the indices ∂ḡm
∂xp can be interchanged.

This can be shown by the following bit of algebraic manipulation:

∂g̃m
∂xn

=
∂
∂xn

(
∂r̄
∂xm

)
=

∂
∂xm

(
∂r̄
∂xn

)
=
∂g̃n
∂xm

(4.1.18)

The right hand side of the equation ?? can be obtained by adding together the three
equations of the form given by ?? in which m,n and p have been properly permuted.
We will obtain the following vector analysis definition of the Christoffel symbol of the
first kind:

[mn,p] =
∂gm
∂xn
· ḡp (4.1.19)

In arriving at this formula, equation ?? has been used.

It follows from the reciprocal relation equations ?? and ?? that

[mn,k]ḡk =
ḡm
xn

(4.1.20)

and hence
[mn,k]ḡk · ḡr = [mn,k]gkr =

∂ḡm
∂xn
· ḡr (4.1.21)

Thus, upon comparison of equation ??with equation ??we have the following vector
analysis definition for the Christoffel symbol of the second kind:

Γ rmn =
∂ḡm
∂xn
· ḡr =

∂ḡn
∂xm

· ḡr (4.1.22)

Again, by making use of the reciprocal relation in equation ?? and the above, it follows
that.

ḡpΓ
p
mn =

∂ḡm
∂xn

(4.1.23)

If we differentiate the reciprocal relation, equation ??with respect to xm, we obtain.

∂ḡr
∂xm

· ḡn + ḡr ·
∂ḡn
∂xm

= 0 (4.1.24)

Therefore, the Christoffel symbol of the second kind is also given by:

Γ rmn = −
∂ḡr
∂xm

· ḡn (4.1.25)

and the companion to equation ?? is

ḡpΓ rmp = −
∂ḡr

∂xm
(4.1.26)

There are some additional useful formulae which will be introduced at this point. By
contracting the Christoffel symbol of the second kind, there is obtained

Γ kkn =
1
2
gkp

(
∂gnp

∂xk
+
∂gkp
∂xn
−
∂gkn
∂xp

)
=
1
2
gkp

∂gnp

∂xk
(4.1.27)
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If Ĝrs is the cofactor of grs in the determinant formed by the components of the
fundamental metric tensor, then the expansion of the determinant in terms of the rth
row is.

g = grsĜ
rsno sum on r, sum on s only (4.1.28)

and hence,
∂grn
∂xp

= grs
∂Ĝrs

∂xrn
+
∂grs

∂grn
sum on s only (4.1.29)

Since the cofactors Grs (r is specified, s = 1,2,3) will not contain the specific component
grn, the first term of equation ?? is zero. Additionally, the g ′rns are independent and
hence equation ?? becomes

∂g

∂grn
=
∂grs
∂grn

Ĝrs = δnsG
rn (4.1.30)

There is also the relation
∂g

∂gm
=
∂g

∂grs

∂grs
∂xm

= Ĝrs
∂grs
∂xm

(4.1.31)

and if it is remembered that
grs =

Ĝrs

g
(4.1.32)

then
∂g

∂xm
= ggrs

∂grs
∂xm

(4.1.33)

By combining equation ??with equation ??, we obtain the very useful result that

∂g

∂xm
= 2gΓ rrm (4.1.34)

or in another form
∂
√
g

∂xm
=
√
gΓ rrm (4.1.35)

4.2 covariant differentiation
We have observed in section ? that the derivatives of tensor of zero order, i.e., a scalar,
are the components of a tensor of the first order. It will be shown in this section that
this is the only case in which the derivatives of a tensor yields another tensor. However,
in this section there will be an operation defined akin to ordinary differentiation which,
when performed on a tensor, yields another tensor of one higher covariant order. This
tensor operation is known as covariant differentiation

Let us consider the transformation law for a contravariant tensor

vm =
∂xm

∂x̃p
ṽp (4.2.1)

and differentiate it with respect to xn.

∂vm

∂xn
=
∂xm

∂x̃p
∂x̃q

∂xn
∂ṽp

∂x̃q
+
∂2xm

∂x̃p∂x̃q
∂x̃q

∂xn
ṽp (4.2.2)
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Clearly, equation ?? does not conform to the tensor transformation law due to the
presence of the second term. The second derivative in equation ?? can be replaced by
its equivalent which is given in equation ??. The result is

∂xm

∂xn
=
∂xm

∂x̃q
∂x̃q

∂xn
∂ṽp

∂x̃q
+
[
∂xm

∂x̃m
Γ rpq −

∂xi

∂x̃p
∂xj

∂x̃q
Γmij

]
∂x̃q

∂xn
ṽp (4.2.3)

By taking cognizance of the following formulae (see equation ??)

∂xj

∂x̃q
∂x̃q

∂x̃n
= δin (4.2.4)

∂xi

∂x̃p
ṽp = vi (4.2.5)

equation ?? becomes, with a slight rearrangement,[
∂vm

∂x̃n
+ Γminv

i

]
=

[
∂ṽp

∂x̃q
Γ
p̃
rqṽ

r

]
∂xm

∂x̃q
∂x̃q

∂x̃n
(4.2.6)

It is evident from an examination of ?? that the quantities inside the square brackets
transform according to the law for a mixed tensor of the second order. We are permitted,
therefore, to introduce the following as a mixed tensor.

vm,n =
∂vm

∂xn
+ Γminv

i (4.2.7)

where the squiggle from the n is a comma and is used to symbolize the process of
covariant differentiation of the tensor am with respect to xn.

The transformation law of this mixed tensor is

v,mn =
∂xm

∂x̃p
∂x̃q

∂xn
ṽ
p
,q (4.2.8)

as given by equation ??. The system v,mn obtained in the manner indicated by equation
?? is said to be the result of the covariant differentiation of the tensor vm with respect
to xn. We will use a comma placed before the n to indicate this process of covariant
differentiation.

A similar process can be defined for a covariant tensor. By differentiating with respect
to xn, the equation

ũm =
∂xp

x̃m
up (4.2.9)

which governs the transformation of a covariant tensor fo the first order, and again
making use of equation ??, there is obtained

ũm,n =
∂xp

∂x̃m
∂xqp

∂x̃n
up,q (4.2.10)

where up,q is defined by the relation

up,q ≡
∂up
∂xq
− Γ ipq (4.2.11)
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The quantities up,q defined in equation ?? are the components of a covariant tensor of
the second order and are the result of the covariant differentiation of the covariant
tensor up with respect to xq.

It can be verified by differentiation of the appropriate transformation law that the
covariant derivatives of higher order tensors are also tensors. Thus, the covariant
derivatives of the second order tensors are defined as

vmn, k ≡ ∂v
mn

∂xk
+ Γmhkv

hn + Γ hnkv
mh (4.2.12)

vmn,k ≡
∂vmn
∂xk
− Γmhkw

h
n − Γ hnkw

m
h (4.2.13)

vmn,k ≡
∂vmn
∂xk
− Γmhkw

h
n − Γ hnkw

m
h (4.2.14)

An examination of equations ??, ??, ??, ??, ?? disclosed the following facts.

1. Covariant differentiation produces a tensor of one covariant higher order.
2. The first term in each definition consists of the ordinary partial derivative of the

original tensor.
3. There is added a term involving a Christoffel symbol of the second kind for each

contravariant index in the original tensor.
4. There is subtracted a term involving a Christoffel symbol of the second kind for

each covariant index in the original tensor.

Observe also that in each term there is the same up and down arrangement of free
indices; once these are arranged, the dummy indices go into the remaining slots.

It is a simple task to demonstrate that the covariant differentiation of the sum, difference,
outer and inner product of tensors obey the same rules as ordinary differentiation. For
example,

(umnw
kl),p = umn,pw

kl +umnw,
kl
p (4.2.15)

Once again, we can add to our understanding of the covariant derivative by appealing
to ordinary vector analysis. In the language of section ?, a vector v̄ can be expressed in
component form in terms of the covariant vectors ḡm:

v̄ = vmḡm (4.2.16)

If equation ?? is differentiated with respect to xn, we obtain

∂v
∂xn

=
∂ḡm

∂xn
ḡm + vm

∂ḡm

∂xn
(4.2.17)

The partial derivatives of the base vector, ∂ḡm∂xn , can be replaced by means of equation ??.
With a change in dummy indices, equation ?? becomes

∂v̄
∂xn

=
[
∂vm

∂xn
+ Γmrnv

r

]
ḡm (4.2.18)

The expression in the square brackets is precisely the covariant derivative (see equation
?? of vm. Therefore

∂v̄
∂xn

= v,mn ḡm (4.2.19)
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Thus, we are able to interpret the covariant derivative of the contravariant tensor vm as
the components ∂v̄

∂xn referred to the covariant base vectors ḡm.

In an analogous manner, we can represent the vector v̄ in terms of its covariant
components (see equation ??) and prove that

∂v̄
∂xm

= uv,mḡ
r (4.2.20)

In this case, the covariant derivative of the covariant tensor is seen to be the components
of ∂v

∂xm referred to the contravariant base vectors ḡr

4.3 intrinsic differentiation
In the previous section the covariant derivative has been shown to be the tensor
equivalent of the partial derivative, There will be developed in the section the tensor
equivalent of the total derivative. Let us consider a contravariant tensor defined along a
curve C which is specified in terms of a parameter t i.e.,

C : xi = xi(t) (4.3.1)

Frequently we are interested in the rate of change of vm along the curve C. This is
accomplished by forming the derivative with respect to the parameter t of the invariant
gmnv

mvnL:
d
dt

(gmnv
mvn) =

∂gmn
∂xp

m

vn · dx
r

dt
+2gmnv

n∂v
n

∂dt
(4.3.2)

By introducing equation ??, the above becomes

d
dt

(gmnv
mvn) = vmvn

dxp

dt

[
grΓ

r
mp + grΓ

r
np

]
+2gmnv

mdv
n

dt
(4.3.3)

Next, with a suitable rearrangement of the dummy indices there is obtained

d
dt

(gmnv
mvn) = 2gmnv

m

[
dvn

dt
+ vsΓ sp +

dxp

dt

]
(4.3.4)

The quantity inside the square brackets is called the intrinsic derivative (afterMcConnell)
of vm with respect to t and will be shown to be a tensor. We represent it as

δvm

∂dt
≡ ∂dv

m

∂dt
+ vsΓmsp

δxp

∂dt
(4.3.5)

We differentiate with respect to t, the transformation law

vm =
∂xm

∂x̃p
ṽp (4.3.6)

with the result
dvm

dt
=
∂x̃m

∂x̃p
dṽp

dt
+ ṽp

∂2xm

∂x̃p∂x̃r
dx̃r

dt
(4.3.7)

and introduce the equation ?? as well as

ṽp =
∂xp

∂xn
vn (4.3.8)
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and
dx̃r

dt
=
∂xr

∂xk
dxk

dt
(4.3.9)

in the proper places with the result

dvm

dt
+ vnΓmnk

dxk

dt
=
∂xm

∂x̃p

[
dṽp

dt
+ ṽl

dx̃r

dt

]
(4.3.10)

This is recognized as the proper transformation law for a contravariant tensor of the first
order and justifies the use of the one free contravariant index for the intrinsic derivative.
In a like manner it can be proved that the intrinsic derivative of a covariant vector,
defined as

δum
δt
≡ dUm

dt
−up

dxn

dt
(4.3.11)

is a covariant vector

The extension of the process of intrinsic differentiation to tensors of higher order is
straight forward. Thus, we write

δaijk
δt
≡
daijk
δt

dt + amjkΓ
i
mn
dxn

dt
− aimkΓ

m
jn
dxn

dt
− aijmΓ

m
kn
dxn

dt
(4.3.12)

It should be carefully noted that the intrinsic differentiation of a tensor leads to a tensor
of the same order and type. The rules of ordinary calculus regarding differentiation of
the sum, difference, and product of quantities apply also to intrinsic differentiation.

As in the case of covariant differentiation, there is an operation in vector analysis which
is equivalent to tensor differentiation. By differentiating the vector v̄ with respect to the
parameter t we obtain

dv̄
dt

=
v̄
xn
dxn

dt
(4.3.13)

The partial derivatives ∂v̄
∂xn is related to the covariant derivative by equation ?? and this,

when substitute into equation ?? yields.

barv
dt

= v,mn = gm
dxn

dt
=

[
∂vm

∂xn
+ vrΓmrn

]
ḡm
dxn

dt
(4.3.14)

We recognize that
dvm

dt
=
∂vm

∂xn
dxn

dt
(4.3.15)

and hence equation ?? can be rearranged to read

dvm

dt
=

[
dvm

dt
+ vrΓmrn

dxn

dt

]
ḡm (4.3.16)

The quantity inside the square bracket is precisely what has been defined as the tensor
derivative of vm (c.f. equation ??. Thus equation ?? can be written as

dv̄
dt

=
δvm

δt
ḡm (4.3.17)
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We are able, therefore, to interpret the tensor derivative of vm as the components with
respect to the covariant base vectors of the vector dv̄dt .

In a similar manner it can be verified that the intrinsic derivatives of a covariant tensor
are the components with respect to the contravariant base vectors of the vector dūdt :

dū
dt

=
δum
δt

ḡm (4.3.18)

4.4 ricci ’s theorem
Ricci’s theorem states that the covariant derivatives of the fundamental tensors gmn and
gmn are zero. The proof is quite simple. First, the tensor derivative of gmn, according to
the prescription given in equation ??, is

gmn.k =
∂gmn
∂xk

− gmrΓmnk − gnrΓ
n
mk (4.4.1)

Second, the partial derivative ∂gmn
∂xk

as given by the equation ?? is substituted into
equation ??, leading to the result

gmn,k = 0 (4.4.2)
Similarly, it can be demonstrated that

gmn,k = 0 (4.4.3)

which is the other part of Ricci’s Theorem.

It can be demonstrated that the covariant and intrinsic derivatives of the generalized
Kronecker deltas and the e-systems are also zero. A direct consequence which results
in great simplification is that in calculating the covariant or intrinsic derivative of
any product, the fundamental tensors, the e-systems and the Kronecker deltas can be
regarded as constants wherever they occur.

4.5 note on the covariant and intrinsic deriva-
tive

We observe that if the coordinate system is rectilinear, then all the components of
the fundamental metric are constants and consequently all of the Christoffel symbols
are zero. An examination, therefore, of the definitions (e.g., ??, ??, ??, ??) discloses
that in rectilinear coordinates the covariant derivative of a tensor is identical with its
partial derivative and the intrinsic derivative is identical with the ordinary derivative.
are led the fascinating and noteworthy result that any relationship in rectilinear
coordinates containing the ordinary or partial derivatives of tensors can be converted to
a corresponding relation which is true in all coordinate systems by merely replacing
the ordinary derivative by the intrinsic derivative and the partial derivative by the
covariant derivative. For example, it is a relatively simple matter to derive the equations
of equilibrium in the theory of elasticity for rectangular Cartesian coordinate system.
These are, in the absence of body and inertia forces.

∂σ ij

∂yi
= 0 (4.5.1)
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where σ ij are the usual physical components of stress in rectangular Cartesian coor-
dinates. It is a much more difficult task to derive the same equations in spherical, or
cylindrical or toroidal coordinates. However, once it has been established that the
components of stress constitute a tensor, then we can immediately write the equations
of equilibrium which are valid in any coordinate system by merely substituting the
covariant derivative for the partial derivative. Thus, equation ?? in general curvilinear
coordinates is written as

τ,
ij
j = 0 (4.5.2)

where τ ij are the tensor components of stress. A different symbol has been used to
emphasize the fact that these are tensor components and not physical components (see
section ?). We observe that equation ?? ahs the same outward simplicity exhibited by
equation ??. Nevertheless, the specialization to any coordinate system is given by the
prescriptions to be found in equations ??, ??, ?? and ??.

4.6 reimann-christoffel tensor
The process of covariant differentiation in a manner has been defined such that the
result is also a tensor. This process can be continued to obtain covariant derivatives
of higher order. For example, let us examine the second covariant derivative of the
covariant tensor vj . The first covariant derivative is exhibited again for convenience:

vj,n =
∂v
∂xn
− vlΓ ljn (4.6.1)

In taking the covariant derivative of vj,n, we keep in mind that it is a covariant tensor of
the second order and hence equation ?? is to be followed. There results

vj,np =
∂
∂xp

(vj,n)− vl,nΓ ljp − vj,lΓ
l
np (4.6.2)

All three terms on the right-hand side of equation ?? can be expanded by introducing
equation ?? to yield

vj,np =
∂2vj
∂xn∂xp

− vl
∂
∂xp

Γ ljn −
∂
∂
Γ ljn −

∂vl
∂xn

Γ ljp + vkΓ
l
jpΓ

k
ln −

∂vj

∂xl
Γ lnp+ (4.6.3)

We will now investigate the question of the commutability of covariant differentiation.
In other words, is the order of covariant differentiation important, i.e., does vj,np = vj,pn
? Let us interchange n and p in equation ?? and then subtract the result from equation
?? :

vj,np − vj,pn = vlRl.jnp (4.6.4)

The system represented by Rl.jnp is known as Reimann-Christoffel tensor and is a
function of the Christoffel symbols.

Rl.jnp =
∂
∂xn

Γ ljp −
∂
∂xn

Γ ljn − Γ
l
nsΓ

s
jp − Γ

l
psΓ

l
ps (4.6.5)

It is clear from equation ?? that the necessary and sufficient condition that the covariant
differentiation be commutative is the vanishing of the Reimann-Christoffel tensors.
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We note that Rl.jnp is indeed a tensor of the order and type indicated by the position
of the indices because the quotient law can be applied to equation ??. It should be
noted that it is formed exclusively from the fundamental tensor and its derivatives up
to the second order since only Christoffel symbols appear in defining equation. An
examination of equation ?? reveals that Rl.jnp is skew-symmetric with respect to the last
two subscripts.

Rl.jnp = −R
l
.jpn (4.6.6)

It is clear from equation ?? that covariant differentiation is commutative if and only
if the Reimann-Christoffel tensor is zero. Actually, all of our developments thus far
have been assumed to occur in an Euclidean space which means that there exists a
transformation of coordinates which will reduce the line element from its general form
(equation ??) to the form given by by equation ??. In an Euclidean space and in an
orthogonal Cartesian coordinate system, therefore, the left-hand side of equation 1.25.4
becomes.

Vj,np(y
1, y2, y3)−Vj,pn(y1, y2, y3) =

∂2vj
∂yn∂yp

−
∂2vj
∂yp∂yn

− (4.6.7)

But this is identically zero since the order of partial differentiation is immaterial.
Consequently, the Reimann-Christoffel tensor is identically zero in three-dimensional
Euclidean space. We recall that Euclidean space is one in which a transformation can
be found such that the components of the metric tensor are constants. Clearly this can
be always be accomplished in the three dimensional space we live.

An associated tensor can be obtained by lowering the contravariant index:

Rrjnp = grlR
l
.jnp (4.6.8)

The substitution of equation ?? into ?? yields

Rrjnp =
∂
∂xn

[jp, r]− ∂
∂xp

[jn, r] + Γ ljn[rp, l]− Γ
l
jp[rn, l] (4.6.9)

This can be further reduced to the following:

Rrjnp =
1
2

(
∂2grp
∂xj∂xn

+
∂2gjn
∂xr∂xp +

∂2grn
∂xj∂xp

− ∂2gjp
∂xr∂xn

)
+ (4.6.10)

gts([jn, s][rp, t]− [jp, s][rn, t]) (4.6.11)

It is observed upon examination of equation ?? that Rrjnp has the following special
properties:

Rrjnp = −Rjrnp (4.6.12)
Rrjnp = −Rrjpn (4.6.13)
Rrjnp = −Rnprj (4.6.14)

Rrjnp +Rrnpj +Rrpjn = 0 (4.6.15)

Thus, the Reimann-Christoffel tensorRrjnp is skew-symmetric in its first two and last two
indices, and is symmetric if the first pair of indices is interchanged with the second pair.
As a result, there are only six independent component of Rrjnp in a three dimensional
Euclidean space; namely,

R3131 R3232 R1212 R3132 R3212 R3112 (4.6.16)
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It is convenient to introduce at this point the tensor Skl defined by

Skl ≡ 1
4
εkrjεlnpRrjnp (4.6.17)

which is seen to be symmetric. The systems denoted by εmnp and εmnp are permutation
tensors defined as follows:

εmnp =
1
√
g
emnp (4.6.18)

εmnp =
√
gemnp (4.6.19)

Upon contraction with εkimεlqs there results

εkimεlqsS
kl = 1

4δ
rj
imδ

np
qs Rrjnp (4.6.20)

1
2δ

np
qs Rimpn = Rimqs (4.6.21)

and hence
Rimqs = εkimεlqsS

kl (4.6.22)

Therefore, in a space of three dimensions, the Reimann-Christoffel tensor can be
expressed in terms of the symmetric double tensor Skl .

It is easy to see on the basis of Skl that Rrjnp has only six distinct components as stated
above. Also it is clear that if Skl = 0 then Rl.jnp is also zero.

aij,rs − aij,sr = amjRm.irs + aimR
m
.jrs (4.6.23)

a,
ij
rs−a,

ij
sr = −amjRi.mrs − aimR

j
.mrs (4.6.24)

a,mnr −a,mrn= apRm.prn (4.6.25)
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